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INTRODUCTION 
 
 Current correlations for many fuel properties are based on bulk properties or 
detailed chemical information, both of which can be time consuming and costly 
to measure [1], [2]. Infrared spectra provide a convenient alternative because 
they can be easily measured and correlated to a wide variety of properties. 
Although predictive models based on infrared spectra have long been used with 
fuels, the vast majority of earlier work has been focused on quality parameters of 
fuels. A review of research done in this area for fuel property prediction is given 
in Chapter 2 (see also [3], which is included here as Article 1). In this thesis it is 
instead proposed that models based on infrared spectra could be used as a 
substitute for existing thermodynamic correlations to provide detailed 
information about the behavior of a fuel. Based on the review in Chapter 2 and 
Article 1 [3], no one has tried such an approach before. 
 When attempting to use multivariate infrared models for predicting 
thermodynamic properties three main questions arise: 

 Which properties are more difficult to predict and why? 
 Can infrared models perform at a level equivalent to that of the bulk 

property correlations commonly used? 
 Is it possible to develop infrared models as a complete solution for 

thermodynamic property prediction? 
This thesis addresses these questions. 
 The theory underlying property prediction using chemometric models, 
especially models based on infrared spectra, is detailed in Chapter 3. Because 
infrared spectroscopy is the most often used input data for these chemometric 
models, Chapter 4 gives an overview of the various infrared measurement 
systems that exist. 
 In this PhD research the feasibility of predicting thermodynamic data from 
infrared spectra was investigated by using experimental data for Kukersite shale 
oil samples. An overview of the database containing this experimental data is 
given in Chapter 5, along with information about sample preparation and the 
measurement techniques used. Kukersite shale oil was used because our research 
group was performing a project to measure and predict thermodynamic 
properties of this oil (Project AR10129 “Examination of the Thermodynamic 
Properties of Relevance to the Future of the Oil Shale Industry”). Additionally, 
because Kukersite shale oil contains large quantities of polar phenolic 
compounds, many conventional correlations give poor results for Kukersite 
shale oil. Therefore, it provides a good test case because many other alternative 
fuels, such as bio-oils and coal liquids, contain polar compounds. Based on the 
experimental data and infrared spectra (overviewed in Chapter 6), multivariate 
models were created using partial least squares regression and support vector 
regression, and the method for doing so is described in Chapter 0. 
 Models for simpler temperature independent properties were created first, 
and the results are presented in Chapter 8. Properties related to molecular 
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structure (i.e. density and refractive index parameter), molecular size (i.e. 
molecular weight and average boiling point) and chemical composition were 
investigated, along with a few other properties. Although predicting a 
thermodynamic property at one temperature does provide good information, 
because many of these properties change with temperature, the real need is to 
predict these properties over a range of temperatures. Chapter 9 outlines an 
approach for doing so, and shows results for two temperature dependent 
thermodynamic properties. 
 The performance of the models is then assessed in Chapter 10 to determine 
which properties can be predicted well and whether or not models based on 
infrared spectra can indeed be used as a substitute for conventional 
thermodynamic correlations for fuels. Based on the experience gained while 
performing this PhD research, some obstacles in using models based on infrared 
spectra were identified. Chapter 11 gives more information on these issues, and 
these can be directions for future research. 
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1. FUEL PROPERTY PREDICTION – A REVIEW 

The need for property prediction 
 We can gather information through observation, but as soon as we begin to 
interact with the world around us predictions are required. Predictions are our 
attempts to use observed information to estimate what occurs in situations we 
have never observed. As we analyze the information we already have we start to 
see underlying patterns and causes, and our predictions evolve from mere 
guesses towards sophisticated models and theories. In this way, predictions 
provide an outlet for our knowledge and lead to a practical result, and at the 
same time provide motivation for increasing our understanding of the world 
around us. Indeed, prediction is the connection between knowledge and action. 
 For chemical systems in particular, property prediction allows a material’s 
properties to be estimated when experimental data is unavailable and can reduce 
costs by decreasing the number of measurements required. Accurate predictions 
essentially give us additional knowledge about a system, which helps us make 
better decisions and achieve better results. Also, in our attempts to predict 
properties we often gain a more fundamental understanding of the laws of nature 
that determine what properties a material will have. 

Approaches to fuel property prediction 
 Prediction is finding a relationship between parameters so as to estimate one 
or more parameters from the others. The process can be broken into three 
phases: (1) collecting input data, (2) transforming the input using a data 
abstraction method, (3) modeling the relationship between the data and the 
property. 

Collecting input data 
 For fuels experimental data is often used as the input to the models, and the 
main types of experimental data used are [1], [2] 

 Bulk, or average, properties (density, average boiling point, distillation 
curve, molecular weight, etc.) 

 Simple chemical composition information (PNA composition, SARA 
composition, NMR spectra, infrared spectra)  

 Detailed molecular information (data from chromatography coupled 
with NMR or MS) 

Although a detailed chemical description is readily available for pure 
compounds and simple mixtures, the majority of fuels are complex mixtures for 
which detection of all the compounds present is infeasible. Instead, the 
experimental data usually only enables identification of groups of compounds 
(such as paraffins, naphthalenes and aromatics (PNA)) or average parameters 
describing the molecular structures found in the sample (such as types of bonds 
or functional groups). Modern analytical techniques, such as gas 
chromatography coupled with mass spectrometry (GC-MS), can indeed provide 
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a large amount of information, but even these instruments do not provide 
complete separation. Very similar compounds, such as isomers, will still be 
indistinguishable [4]. Samples for which information about the chemical 
composition is known are termed defined mixtures. When this information is not 
known the samples are called undefined mixtures, and these mixtures must be 
characterized using their bulk physical properties, such as density, average 
boiling point, viscosity or refractive index. 
 Sometimes the measured data is also converted to another input type. For 
example, detailed data from GC-MS systems can be used to calculate simpler 
parameters, like the PNA ratio or density and distillation curve. This is often 
done so that correlations can be used that are based on those input parameters. 
Also, some methods have been developed that attempt to determined 
compositional information from simple bulk properties [2], [5]. 
 The optimum type of input data depends on the cost of obtaining the data and 
the relative benefit of having more information. For situations where detailed 
experimental data is difficult to obtain, such as for reservoir fluids, methods 
based on bulk properties are often used [6]. In large refineries, where improved 
optimization can lead to higher profits, detailed molecular information may be 
used [4]. However, because such detailed data can be expensive to obtain [2], 
some compromise between the extremes is usually found that gives enough 
information to obtain reasonably accurate predictions for a good range of 
different fuel compositions. 

Data abstraction 
 Although predictions can be made directly from the input data, often more 
robust models can be obtained using some form of data abstraction. Data 
abstraction is used to transform input data to a form that makes it easier to get 
good predictions for many different fuel compositions. Generally, data 
abstraction is not used with simple correlations based on bulk properties 
(although something like the Watson K characterization factor [7] could be 
considered a form of data abstraction), but complex data such as chromatograms 
or spectra often need data abstraction for predictions to be accurate because such 
data can vary significantly between fuel samples or measurement device, which 
can make it difficult for regression methods to find a good predictive correlation 
[8]. For fuels data abstraction is often accomplished by converting compositional 
data into one of the following forms: 

 Pseudocomponents [1] 
 Molecular type and homologous series matrix representation [2] 
 Average molecular structures  
 Molecular components (large collection of individual representative 

molecules) [2], [4] 
These different data types all attempt to do the same thing: represent the mixture 
in terms of a simplified composition by lumping together similar compounds. A 
pseudocomponent is a group of similar molecules that are lumped together and 
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considered a single component [1]. Similarly, a molecular type and homologous 
series matrix divides the mixture by molecular class (alkane, alkene, 
cycloalkane, aromatic, etc.) and size (carbon number or average boiling point) 
[2]. The mixture can also be considered a mixture of functional groups or small 
structures, characterized using average molecular structural parameters (such as 
the average number of carbon atoms per molecule, weight percent of CH2 groups 
or hydrogen/carbon ratio) [2]. The most detailed form is to use a large number of 
representative molecules [2], [4], [8], for which individual compounds or groups 
of compounds (often isomers) in the mixture are identified. 

Modeling the relationship 
 Property prediction is usually accomplished using one of these types of 
correlation: 

 Empirical equations with a few variables 
 Empirical equations with many variables 
 Equations based on theory (equations of state, group contribution 

methods, etc.) 
Many equations based on bulk properties are simple empirical correlations that 
take the form of an algebraic equation containing a few variables. With the 
advent of computers, it is now also feasible to create multivariate equations 
based on a large number of variables, which can use the larger datasets provided 
by modern analytical techniques. These multivariate correlations, or models, are 
usually found using advanced statistical and mathematical regression methods, 
including partial least squares regression, neural networks and support vector 
regression. 
 Often, empirical equations are simply used to determine the parameters for an 
existing thermodynamic relationship, such as an equation of state or a group 
contribution method. Then important physical properties and phase behavior can 
be calculated from these thermodynamic relationships, which reduces the 
number of empirical correlations needed and can extend the prediction range. 

Shale oil 
 This research investigation used data for Kukersite shale oil samples. Shale 
oil is a liquid fuel produced through pyrolysis of oil shale [9], [10]. Oil shale is a 
solid fossil fuel that is found in great abundance around the world [11], and it 
has been estimated that about 4,700 billion barrels of shale oil could be produced 
from these reserves [12]. The largest oil shale deposit is the Green River 
Formation in the United States, and other major deposits are found in Australia, 
Brazil, China, Congo, Estonia, Italy, Jordan, Morocco and Russia [12]. Although 
large reserves are available, oil shale has seen only limited use due to 
technological and environmental challenges that have kept it from being an 
economically viable fuel in most situations [13]. However, several countries still 
have active oil shale industries, including Estonia, China and Brazil, and several 
countries are investigating the use of their oil shale resources as a way to reduce 
dependence on foreign energy imports [12]. In Estonia, the oil shale industry has 



19 

operated for about a century, and about 2.3 million barrels of shale oil were 
produced in 2008 [14]. 
 To produce oil, the oil shale is heated to high temperatures in an inert 
environment and pyrolysis reactions start to occur [9], [10]. During pyrolysis, the 
solid organic macromolecular structure (called kerogen) starts to decompose into 
smaller molecules and oil and gas are produced. A variety of technologies have 
been developed to carry out oil shale pyrolysis. So far all commercial production 
has taken place in above ground plants (also called retorts), but many 
investigations have also been made into producing oil underground directly in 
the oil shale formation (termed in situ retorting). The composition and properties 
of the resulting shale oil depend not only on the raw oil shale used, but also on 
the retorting technology [15]. 

Property prediction for shale oil 
 Most property correlations for oil shale oil are simple algebraic formulas 
based on bulk properties of the oil. This is due to the lack of experimental data 
for creating correlations. The small amount of data on important physical and 
thermodynamic properties found in the literature for shale oil is for undefined 
fractions, and often only a small amount of characterization data is presented 
(see Article 2 [16]). Therefore, only the simplest correlations for undefined 
mixtures can be developed. 
 As was reviewed in Article 2 [16], most of the data and correlations are given 
in three sources [17]–[19]. These correlations are presented either as simple 
algebraic equations of one or two variables or as figures and tables. Most of the 
data is for lighter fractions with average boiling points below 350 °C, and the 
data in these sources was measured during the period from 1920 to 1950. A 
larger database, containing samples with a wider range of compositions and 
more detailed characteristic data, is needed to support development of more 
advanced predictive correlations.  



20 

2. CHEMOMETRICS FOR FUEL PROPERTY 
PREDICTION 

Overview of developments 
 Many analytical techniques, such as infrared spectroscopy, gas chromatography 
and mass spectrometry, result in a large amount of data about a sample. With the 
advent of computers, more complex mathematical and statistical tools became 
widely available for analyzing these data sets, and a field emerged that was related 
to their use for extracting chemical information from data: chemometrics [20]. 
 Beyond just chemical concentrations, it has long been shown that other 
properties can be predicted from chemical information through the use of 
multivariate (chemometric) methods. Some early studies were done on wheat to 
predict properties like the protein and moisture contents (1982) [21], and it was 
shown that quality parameters of tape could also be predicted (1984) [22]. The 
earliest study found about predicting fuel properties was a study on peat from 1986 
in which the calorific value, carbon content, quantity of hydrolysable material and 
volume weight were predicted [23]. Other studies soon followed, and it appears that 
there has been increasing interest in this area, as judged by the fact that the number 
of papers published on the subject per year has been continually increasing. In 
performing this review (published in Article 1 [3]) more than 300 papers and patents 
were found in which fuel properties were predicted using chemometric methods. 
 So, the basic idea of predicting properties from data from analytical methods has 
long been shown to be possible. Over time the range of fuels studied and number of 
properties predicted has increased. Different regression or machine learning methods 
have also been used over time as they are developed by the wider research 
community, including methods for calibration transfer. However, many of the 
papers are very similar, and most offer little in terms of new insights or 
developments. 
 There are, however, a few noteworthy papers that stand out. Balabin and 
Smirnov [24] compared different regression/machine learning methods on their 
performance when extrapolation or interpolation is required. A research group from 
the U.S. Naval Research Laboratory has also published a couple thorough papers 
[8],  [25]. Both have a wide scope, predicting many properties for a wide range of 
fuels from around the globe, and they show how difficult it can be to create a model 
that can be extended to cover the wide range of fuels used around the world. 
Additionally, in their later paper [8] they introduce a data abstraction scheme to try 
to address this difficulty of predicting properties for fuels with compositions that do 
not fall within the calibration range, which is a major problem that limits the 
usefulness of chemometric models for fuel prediction (see also Chapter 11). Some 
papers have had a more general aim of introducing improved or new chemometric 
methods, and have simply used fuel property prediction as a test case. 
 To get a better overview of work done with fuel property prediction, the 
reviewer examined the properties predicted, the types of fuel used, the analytical 
methods used for gathering input data, the accuracies of the models and the 
regression methods used. The results of this review were initially published in 
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[3], and this article is included as a supplement to this dissertation (Article 1). 
For ease of reading, the main points are reiterated here. 

Properties predicted 
 A wide range of fuel properties have been predicted. In total, 104 different 
properties were identified in this review, and most certainly there have been 
others predicted. A list of all the properties that were predicted in at least 3 
sources is shown in Table 1 of [3] (article included here as Article 1), which also 
gives some statistics about the range of accuracies for models for each property. 
 This analysis showed that almost all of the properties that have been 
predicted are fuel quality parameters. Some important thermodynamic and 
physical properties are also quality parameters, and have therefore been 
predicted, although temperature dependent properties have only been predicted 
at a single given standard temperature. 

Fuel types used 
 Models have been created for many different fuels, but petroleum and liquid 
biofuels (biodiesel and ethanol) have been investigated most. The proportion of 
articles investigating each type of fuel is shown in Figure 2-1. No studies were 
found that predicted properties for shale oil besides those published as part of 
this PhD work. 
 

 
Figure 2-1. Fuel types studied in articles which predicted fuel properties using 
chemometric methods. The Unconventional fuels category includes coal liquids, shale oil 
and Fischer-Tropsch fuels. The Others category includes charcoal and rocket fuel. 
(Figure 1, Article 1) 
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Analytical method used for measuring input data 
 The most popular analytical method has been infrared spectroscopy (see 
Figure 2-2), which is probably due to the fact that it is gives quick measurements 
without any need for sample preparation. It is also applicable to many different 
types of samples, and correlates with many properties. Installation costs are also 
lower than some other methods because the measurement accessory can often be 
inserted directly into the process stream and using fiber optics with a near 
infrared spectrometer allows measurements at multiple process locations 
simultaneously. Many other methods have also been used, although less 
frequently, and the Other category includes a wide range of different methods, 
such as an electronic nose and a thermal wave interferometer. 
 

 
Figure 2-2. Types of input data used for predicting fuel properties using chemometric 
methods. The proportion from different types of fuels (solid, liquid or gas) is also shown. 
(Figure 3, Article 1) 

Accuracy of the models 
 The accuracy of a model depends on a variety of factors, including things like 
the repeatability of the spectrometer, the accuracy of the reference data, the 
presence of outliers, the range of samples used and the strength of the correlation 
between the input data and property to be predicted [26]. Therefore, a full 
comparison of the performance of different models would require more 
information and a more detailed analysis. However, a few observations can be 
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made simply by comparing the accuracies of the models given in the literature 
reviewed. Summary statistics for many different properties are given in Table 1 of 
[3] (article included here as Article 1). 
 More information can be found by looking at the distribution of accuracies for 
different models of the same property. This distribution is shown for liquid density 
in Figure 2-3. The distributions examined in this review appeared to have a left 
skewed distribution, as shown by the distribution for liquid density. The model that 
stands out as having the largest errors (0.028 g/cm3) was for crude oil residual 
fractions [27], which are more difficult to handle and measure. There was a general 
correlation between the types of fuels examined and the accuracy. Models with 
larger errors were mostly for crude oils, residual oils or fuels from a broad range of 
sources (including nonpetroleum sources). The models with the smallest errors were 
for fuels like diesel, gasoline and biodiesel, for which density measurements can be 
more precise and which cover a smaller range of compositions. Some studies also 
only investigated a small sampling of fuels, and a narrower range of compositions 
would also likely enabled tighter fits and better accuracies. 
 Again, more information and analysis would be needed for any further 
investigation as to the causes of difference in performance. However, it is evident 
that different models for the same property can have a fairly wide range of 
accuracies, and some of difference is inherent to the situation being investigated and 
not affected by the quality of the analysis. Thus, a model that has larger errors than 
other models may still be a well-developed model if the samples used or other 
situational factors keep the accuracy from being any better. 
 

 
Figure 2-3. Distribution of models for fuel liquid density according to their root mean 
squared error. (Figure 2, Article 1) 
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Regression methods used 
 Partial least squares (PLS) regression is by far the most often used regression 
technique, which could be expected because it has been the main method used 
since even the early beginnings chemometrics. Over time there has been a slow 
transition towards using newer methods. Early on principal component 
regression and multiple linear regression (ordinary least squares regression) were 
used, but these are now used less often. Instead, techniques that can model 
nonlinearity are receiving more attention, such as nonlinear versions of PLS 
(poly-PLS, spline PLS, kernel PLS), artificial neural networks and support 
vector regression. Also, note that within a given group of regression methods 
there are often many different algorithms and modifications have been used. 
 

 
Figure 2-4. Regression methods used in articles that predicted fuel properties using 
chemometric methods. (Figure 4, Article 1)  
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3. THEORY 

The basis for predicting properties from chemical information 
 If there is a compound or class of compounds that produces a distinct peak on 
a spectrum or chromatogram, then their concentration can often be directly 
measured because the peak area is a function of the concentration of the 
compound. Most fuel properties, however, are not directly measured by the 
analytical method (spectrometer, chromatograph, etc.). For this reason a 
chemometric system for determining such properties is often called a “soft 
sensor” because it does not directly measure the property like a real sensor 
would. The system is just a type of prediction method. 
 What even enables such predictions to be possible? As with any prediction 
method, a relationship must exist between the input information and the 
parameters to be predicted. The properties of a fuel are, naturally, related to the 
chemical composition of the fuel, and these relationships allow properties to be 
predicted from information about the chemical composition. Of course, the 
relationships between composition and properties can be quite complex, which is 
why empirical tools, such as chemometric methods, are often used for analyzing 
and approximating the relationships. Also, for complex mixtures, which most 
fuels are, current analytical methods do not give the exact composition. Instead, 
they give some form of simplified information about the sample, and thus, the 
real relationship is between this simplified compositional data and the properties. 
 Because infrared spectroscopy is the main analytical method used for 
chemometric predictions of fuel properties, it deserves a more detailed analysis. 
Molecules absorb electromagnetic radiation in the mid or near infrared ranges 
(wavelengths of about 0.8 to 25 μm) if a photon contains the right amount of 
energy to cause a molecular vibration. The energy level, or wavelength, at which 
a vibration occurs depends in large part on the strength of the bond and on the 
molecular structures surrounding it. The absorption is registered by the 
spectrometer and a corresponding peak occurs on the spectrum. [28],  [29] So, 
infrared spectroscopy essentially gives information about the strength and local 
environment of bonds in a sample.  
 Some important limitations arise due to the nature of the information 
contained in infrared spectra. First, an infrared spectrum is related to the types 
and concentration of bonds in the sample, but the exact relationship between 
spectrum and chemical composition is often complicated. This means empirical 
relationships are generally needed, even when predicting parameters related to 
chemical composition. Second, infrared spectra mostly give information about 
local bond structure, and do not directly give information about overall 
molecular structure. As a result, different compounds or mixtures of compounds 
can give identical spectra. This also implies that infrared spectra do not directly 
give information about the molecular weights of the molecules in the mixture. 
[30] 
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 Based on these limitations, the correlation between a property and infrared 
spectra should theoretically be more direct for some properties than others. 
Trygstad et al. [31] emphasized this, and gave sulfur content and Reid vapor 
pressure as two examples of properties for which the correlation is tenuous. For 
both, the concentrations of compounds that directly affect these properties are 
quite low, and they cannot be detected from the infrared spectrum of the fuel. 
According to this line of reasoning, spectra give information that is directly 
related to the concentration of bonds in a sample, and therefore, parameters such 
as carbon or hydrogen content should be more directly related to the spectra. 
Conversely, properties dependent on molecular size, such as average boiling 
point or average molecular weight, should have a weaker indirect relationship to 
infrared spectra. 
 In reality though, there are still often strong correlations between infrared 
spectra and properties such as molecular weight and sulfur content. In these 
cases there is apparently some underlying cause that leads to simultaneous 
changes in both the compounds affecting the property and some other functional 
group which is observable in the infrared spectra. For example, this may occur 
when the processing method used to remove sulfur also affects other compounds 
in the sample, or when the types of bonds and functional groups change as the 
molecular weights of samples increase. In other words, spectra can indirectly 
contain significant amounts of information about these properties that 
theoretically should only be weakly related to infrared spectra. 

Overview of multivariate regression methods 
 Multivariate regression methods are used with data sets that contain more 
than two variables. During the past decades the size of data sets has grown, 
which has led to increased interest in multivariate statistics and regression 
methods. Here we give a brief overview of some of the main concepts related to 
multivariate regression. 
 Likely the simplest method is multiple linear regression, which is patterned 
after ordinary linear regression and finds a single linear coefficient for each 
input variable. The coefficients are found directly from the input data, often by 
finding coefficients that minimize the sum of the squares of the model residuals. 
However, this method can quickly become ineffective as the number of variables 
increases. 
 A common problem with multivariate regression methods is having fewer 
data points than variables. Another is that relationships often exist between the 
input variables (called collinearity). In both cases multiple linear regression will 
find several sets of coefficients for which a minimum occurs, but cannot provide 
any distinction as to which solutions will actually provide good predictions. For 
this reason, methods like principal component regression, ridge regression and 
partial least squares (PLS) regression were developed. 
 Almost all multivariate regression methods seek to deal with the problem of 
sparse data by identifying a smaller number of underlying structures in the data 
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that can be used as preferred directions for regression. By defining these 
underlying metavariables, the data set is simplified and a stable regression can 
be achieved. Principal component regression and PLS regression identify what 
are called components, which are related to the eigenvectors of the data [32], 
[33]. Often large data sets can be described by just a handful of components, 
which reduces the amount of data needed and leads to a regression model with 
better performance. 
 However, these methods are still linear methods. Often neural networks or 
support vector regression are used, which can model nonlinearity more 
effectively. These describe the underlying structure of the data in terms of 
neurons or support vectors, and can provide a closer fit than linear regression 
methods in many situations. 
 Multivariate regression methods can be quite powerful, and one danger is that 
they can over fit the data. This occurs when they start to model noise in the data 
and fit it so closely that the model’s prediction accuracy actually decreases. 
Therefore, when performing regression, or training, the error of the model must 
be determined from data points that are left out of the training set (the set of 
points used for regression, or training). This second set, or test set, can give a 
good estimate of the actual accuracy of the model’s predictions and can indicate 
at which point added model complexity does not increase accuracy. Parameters 
to be used by the regression methods can then be optimized based on this 
prediction error. 
 Setting data aside as a test set can be problematic, however, because it 
requires more data to be measured to compensate for those points that are left 
out. Additionally, the points left out have to be chosen in such a way as to give 
an accurate representation of the error that could be expected for model 
predictions. To avoid these problems cross validation is used, which involves 
performing regression multiple times with different samples left out each time. 
Often the data set is split into groups, or folds, and each group is sequentially left 
out. If only one data point is left out at a time, it is called leave-one-out cross 
validation. The estimated error is then obtained from the residuals of each data 
point when it was left out of the regression. After estimating the error this way, 
all the data points are used in one final regression to get the regression model. 
 The remaining sections of this chapter give more details about the two 
methods used in this work, PLS regression and support vector regression, and 
also describe  

Partial least squares regression 
 Partial least squares regression is based on finding underlying components 
that describe most of the variation in the input data and also correlate well with 
the property to be predicted [32]. The components are then summed together to 
give the overall predictive model. The final model takes a linear form, which is 
given as Equation 3-1 
 

ܻ ൌ ܺ ∙ ܤ   (1-3) ܥ
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where X and Y are the matrices of input and predicted property values, B is the 
matrix of model coefficients and C is a constant. 
 The use of components simplifies the data and provides a way to handle the 
collinearity that can occur in high dimensional datasets. The procedure for 
finding the components, or factors, is similar to that used in principal component 
analysis. In principal component analysis a vector is chosen that points in the 
direction of maximum variance (which is an eigenvector of the data). That 
vector is taken as a component, and it can be represented as a linear combination 
of the input variables. For PLS regression this vector is found for both the input 
and predicted variables, but in choosing the vector the scores of the input and 
predicted matrices are switched. This allows information about the relationships 
between input and predicted variables to be used for finding the vector, and this 
rotates the vector to point more towards those variables that are more closely 
related to the variables to be predicted. 
 The components are calculated sequentially. After a component is calculated, 
the residuals are calculated by subtracting the component from the data, and the 
residuals are used as the input for the next PLS cycle. Each additional 
component adds complexity to the model, and the number of components used 
in the final model is usually chosen so that it minimizes the error in the 
prediction, which can be estimated using cross validation. At a certain point 
additional components start to model the noise in the data, and prediction 
accuracy will decrease if these components are included. To find the final 
model, all the component weights for each input variable are summed up to give 
a single regression coefficient for each variable (the coefficient matrix B in 
Equation 3-1), and the regression constant C is calculated. 
 PLS regression generally provides better accuracy than multiple linear 
regression because PLS regression can take into account the collinearity that 
exists between variables. This has made it a popular choice for multivariate 
regression, especially in the fields of chemistry and chemical engineering. It has 
also been used in industry for process monitoring and control [34]. Additionally, 
because PLS is a linear method it generally gives better results for extrapolation 
than neural network methods [24]. 
 However, since PLS regression is a linear method it generally does not give 
as good of an accuracy for nonlinear data sets [24], [35]. It can still approximate 
some degree of nonlinearity because it incorporates multiple components, but 
generally other methods such as neural networks or support vector regression 
will give better accuracy. For this reason, some nonlinear variations of PLS have 
been proposed which seek to account for this disadvantage, including Poly-PLS, 
Spline PLS and Kernel PLS [34], [36]. 

Support vector regression 
 Support vector regression attempts to find a function that fits the data closely, 
but is also as smooth as possible [37]. The regression equation takes a linear 
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form. The cost function used to describe the two goals of the regression is given 
by Equation 3-2. 
 

݁ݖ݅݉݅݊݅݉
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ୀଵ  (3-2) 

 
Here w is the set of weights used in the linear regression equation, and taking the 
2-norm of the weights effectively smooths out the resulting regression equation. 
The second term is related to the error of the fit, and uses slack variables (ξi and 
ξi

*) to make the regression problem feasible for a wider range of data sets. The 
slack variables essentially determine the maximum allowable error for a given 
observation, and minimizing that term reduces the overall error of the fit. C is 
the parameter that controls the tradeoff between the two objectives. If C is 
larger, then the regression algorithm will search for a closer fit at the expense of 
the smoothness of the function. The minimization is performed subject to the 
constraints given as Equation 3-3 
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where x and y are the input data. ε is an error limit. If an observation has a 
residual that is higher than ε then it is termed a support vector, while an 
observation with a residual less than ε has slack variables equal to zero and does 
not impact the resulting regression. If ε is not used (or is set to zero), then the 
method is termed least squares support vector regression. [38] 
 The optimization problem is generally solved in its dual formulation because 
it is usually considered easier to do so than solving the primal problem [37]. In 
optimization, the dual of a problem is formed by creating a Lagrangian that takes 
into account both the original cost function and the constraints [39]. The dual 
problem can then be solved using quadratic programming techniques. 
 To obtain the best solution both C and epsilon need to be optimized. This can 
be done by finding the values that minimize the cross validation error. As 
mentioned, this involves leaving some data points out each time the regression is 
performed, and then using another optimization routine to change C and epsilon 
until a minimum cross validation value is obtained. 
 Although support vector regression finds a linear function that fits the data, it 
can also be extended to model nonlinear relationships by using kernels. A kernel 
is a function that maps, or transforms, input data into a new space, and so 
kernels can be used to embed nonlinear input data in a feature space in which it 
becomes linear [40]. Two popular kernels are the polynomial and radial basis 
function kernels. A polynomial kernel, as might be expected, transforms the data 
using a polynomial function. The radial basis function uses Gaussian functions 
centered at each of the observations, which means the function fits the shape of 
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the data. Kernels usually have additional parameters that must be optimized. For 
the polynomial function, for instance, the degree and zero coefficient of the 
polynomial must be chosen, and these can also be optimized along with C and 
epsilon. [37], [40] 
 The choice of kernel often depends on the problem at hand, and domain 
knowledge is often useful in choosing. A kernel like the radial basis function 
follows the shape of the data and has the ability to provide better local fitting 
than linear or polynomial kernels. Indeed, when using a kernel like the radial 
basis function, support vector machines become universal approximators [41], 
[42]. However because of this, radial basis functions rarely provide good 
estimates when used for extrapolation. A good way to take advantage of the 
strengths of two kernels at the same time is to combine them by creating a mixed 
kernel. For example, by combining the polynomial and radial basis function 
kernels a kernel can be created that is mostly a polynomial and provides good 
extrapolation, but also has some of the radial basis function character to enable 
better adherence to the data. [37], [43] 
 Balabin et al. [24] compared SVR to other multivariate regression methods. 
They found that SVR performed well on chemometric problems where 
extrapolation and interpolation were required, while neural networks did not 
appear to have this ability. At the same time, SVR was also able to model 
nonlinear datasets, while more linear methods like PLS regression were not able 
to do this. So, SVR appears to be able to give better overall fits than many other 
methods: that is, it can give a solution that is complex and nonlinear, but that 
also has structure to it to allow extrapolation. Additionally, SVR leads to a 
global model, which is another advantage it has compared to neural networks, 
which can get stuck in local minima [37], [44], [45]. 
 However, because SVR uses quadratic programming to find a solution, it 
takes more time than many other methods, such as PLS regression. This 
drawback becomes more important as the size of the dataset increases, which 
means SVR can become impractical for large datasets. So, for large datasets 
some sort of data reduction would likely be needed to obtain an answer in a 
reasonable timeframe.  
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4. INFRARED MEASUREMENT SYSTEMS 
 
 As noted, infrared spectra are the most widely used input data for 
multivariate models for fuel property prediction. Therefore, a few words about 
infrared measurement systems are in order. A variety of different infrared 
measurement systems exist, and an understanding of their differences can aid in 
selecting the best setup for a given application and in analyzing the resulting 
data. 

Mid or near infrared 
 One way to categorize infrared measurement instruments is by their 
wavelength range. The range of wavelengths is determined by the radiation 
source. Usually the source emits in either the mid-infrared (2.5 to 25 μm) or near 
infrared (0.8 to 2.5 μm) region, but there are some sources that extend over both 
the mid and near infrared regions. Often these extended sources combine mid 
and near infrared sources in order to do so. There have been some studies that 
have attempted to compare the accuracy of models using the mid or near infrared 
regions, but in general they give comparable results because they contain related 
information. The peaks are more resolved in the mid-infrared region, however, 
and so qualitative analysis often uses this region. Near infrared spectrometers 
have the advantage of being more stable, and they usually have a better 
repeatability than mid-infrared spectrometers. 

Types of accessories 
 Infrared instruments can also be categorized by measurement accessory. The 
measurement accessory used has a large effect on the resulting spectrum, and 
certain accessories may be preferred depending on the type of system being 
measured. The main types of infrared measurements are transmission, attenuated 
total reflection and reflection. 
 
Transmission 
 With transmission measurements the infrared beam simply passes through 
the sample. For liquids a sample cuvette is often used that is made of a material 
that allows the infrared radiation to pass through. For measurements in a process 
transmission probes are available which have a small gap through which the 
sample can flow to be measured. For liquids the path length should be small 
enough that 100% absorption (saturation) does not occur. 
 For gases transmission measurements can be made either in a separate gas 
cell or directly at the place of interest using an open path measurement. With gas 
measurements a longer path length is usually desired because gases do not 
absorb very strongly. An increased path length increases the sensitivity of the 
measurements, and concentration measurements at the level of parts per million 
can be attained. Open path measurements are often used for monitoring, such as 
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part of a safety/warning system in a plant. Open path measurements are also 
used for atmospheric measurements, where the sun is the infrared source. 
 
Attenuated total reflection 
 Attenuated total reflection (ATR) was developed later than transmission 
methods, and is now a popular choice of measurement accessory. ATR 
accessories use a phenomenon called total internal reflection, which as the name 
suggests, means that all the radiation stays inside the measurement crystal and 
none passes through the sample. When the beam hits the crystal/sample interface 
an effervescent wave is created which propagates a small distance into the 
sample (usually no more than a millimeter or two). Energy from that wave can 
be absorbed by the sample, which creates the infrared spectrum. 
 Some advantages of ATR accessories include that very small sample sizes 
can be analyzed. With a small single reflection crystal, a single drop of a liquid 
may be sufficient. Another advantage is that solids and strongly absorbing 
materials can be easily analyzed using this method because the beam does not 
need to pass through the sample, as it does with transmission measurements. 
Many ATR accessories also come with pressure attachments that can be used to 
ensure good contact between the solid and ATR crystal, and can also be used to 
compact powders to achieve better measurements. 
 The range of an instrument can be somewhat limited by the crystal chosen 
because at certain wavelengths the absorbance of the crystal itself can become 
significant. ZnSe is a popular choice because it has a high refractive index 
(which means it can be used to measure samples with a higher refractive index) 
and does not dissolve in water. Diamond crystals are often used with abrasive or 
corrosive samples. 
 ATR accessories also come in different configurations. The most common is 
to have the crystal placed flat in the accessory, and then to have the sample 
placed on top of it. Another type is a horizontal ATR. This is usually used with 
liquids, and generally consists of a small container that holds the liquid up 
against the side of the crystal. Circle ATR cells also exist, which consist of a 
cylindrical crystal placed in a small container that is filled with the liquid to be 
measured. In addition, crystals can be designed so that the infrared beam reflects 
of the crystal/sample interface multiple times, which increases the effective path 
length of the measurement, and therefore, the absorbance. 
 
Reflection 
 Reflection measurements are generally performed on solids. It would be 
difficult to measure solids using transmission because a thin slice would be 
needed to allow the beam to pass through. Therefore, the spectrum is collected 
instead based on the radiation that is reflected off the sample. The advantage 
over ATR accessories is that the sample does not need to be positioned and 
pressed tightly against the ATR crystal. For this reason reflection measurements 
are often used in processes that handle solid materials, such as wheat or coal, 
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because the infrared sensor can be placed above a conveyor belt to continuously 
scan the material. In laboratory instruments the samples are often ground into 
small pieces and mixed with a material that does absorb infrared radiation, such 
as KBr powder. 
 Reflection spectra are generally more complicated than transmission or ATR 
spectra because the reflection spectra also depend on parameters such as the size 
of the sample particles and the distance between the infrared receptor and the 
sample. This can make analyzing and using these spectra more complicated. 

Implementation in industrial processes 
 For use in continuous monitoring of a process, a probe can either be placed 
directly in the process or the process can be constructed to have a cell through 
which transmission measurements can take place. ATR and transmission probes 
exist, and can often be placed directly into a process stream. A flow through cell 
can also be added to a process, which has a window that allows the infrared 
beam to pass through, but adding this can be expensive and sampling errors may 
also occur. A separate flow through measurement cell may also be used to allow 
control of the temperature at the point of measurement. 
 Generally, industrial systems use fiber optics to direct the infrared beam to 
the measurement probe. For this reason near infrared spectrometers have a clear 
advantage over mid infrared spectrometers for industrial applications. Many 
common materials can be used to construct fibers for the near infrared range, 
and due to their low absorbance in the near infrared range, the fibers can even be 
100 m long. This allows one near infrared device to monitor several points in the 
process simultaneously. For the mid-infrared range, however, there are only a 
few fiber materials that can be used. Usually polymer materials are used, and 
even these absorb enough of the mid-infrared beam that the fibers usually cannot 
be much longer than 1 m. 
 And as mentioned, reflection measurement systems can also be used, and for 
these the infrared receptor is generally placed above a conveyor belt that moves 
the material. For these systems, the positioning of the infrared receptor, the 
speed of the conveyor and the number of scans averaged together can all have an 
effect on the resulting spectra, and optimal parameters may need to be selected 
to ensure good model performance [46]. 

Wavelength separation methods 
 In recent years, new methods of separating an infrared beam by wavelength 
have been developed that allow small spectrometers and sensors to be 
developed. Early spectrometers would often use a prism or different grating slits 
to allow specific wavelengths to be isolated and measured. Then Fourier 
transform spectrometers were developed, which allowed rapid and more precise 
measurements. 
 Fourier transform spectrometers use what is called an interferometer to 
separate the infrared beam by wavelength. One of the most common types is a 
Michelson interferometer, which uses a beamsplitter and a moving mirror to 
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retrieve information at specific wavelengths from the overall infrared beam. In 
the Michelson interferometer the infrared source is split into two beams by the 
beamsplitter. One of the beams passes through the sample, where absorption 
takes place. The two beams are then recombined, which causes interference to 
occur in which the beams either add together or cancel each other out 
(constructive or destructive interference). The proportion of constructive or 
destructive interference that occurs depends on the wavelength of the radiation 
and the difference in the distance covered by the two split beams (called the 
optical path difference). By moving a mirror placed in the path of one of the 
beams, the optical path difference can be changed, which changes how much 
each wavelength contributes to the overall beam sent to the detector. This 
interferogram is then transformed to give information according to wavelength 
(a spectrum) using a Fourier transform. [47] 
 By using an interferometer and a Fourier transform information can be 
gathered about multiple wavelengths simultaneously, and the overall 
measurement time decreases. With older prism or grating instruments it would 
often take a couple hours to measure a spectrum, but with Fourier transform 
spectrometers a spectrum can be measured in less than a minute. Many 
interferometers, however, are large. More recent research has led to new 
wavelength separation methods that allow spectrometers to be smaller and 
cheaper. 
 One example is linear array detectors. For these a small chip is created that 
has infrared detectors placed on it as tiny pixels. Then a layer is applied to the 
top of the chip to separate the infrared light by wavelength. This is usually done 
by applying the layer with a varying thickness, and then the layer works like a 
prism. Different pixels in the array are then exposed to only a specific 
wavelength of radiation, and the responses for all the pixels can then be 
combined to give information at multiple wavelengths, i.e. a spectrum. 
 Another interesting development is micromechanical interferometers. These 
use micro machining techniques to create an interferometer that is small in size. 
One type creates a micro scale Fabry-Perot Interferometer, which works by 
placing two reflecting mirrors close together and varying the distance between 
the mirrors to select different wavelengths of radiation [48], [49]. The result is a 
small infrared sensor, which can be used to create smaller and cheaper 
spectrometers. 
 These new developments in spectrometer construction can enable 
measurements to be performed more cheaply and in situations where it would be 
difficult to use the larger spectrometers that are most commonly used right now. 
Many of these new infrared sensors are meant to be cheap, and therefore, 
produce low quality data. However, there are also several high end products 
available with performance that rivals that of even laboratory spectrometers. 
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5. CREATION OF PROPERTY DATABASE 

Samples used 
 This work was performed as part of a larger project to measure the 
thermodynamic properties of Kukersite shale oil. The shale oil for this project 
was obtained from Estonian Energy’s Narva Oil Plant (Narva, Estonia). This 
plant uses solid heat carrier technology [50] (sometimes called the Galoter 
process), and uses Kukersite oil shale (Estonia). Even for one specific process 
the production regime can change, which then can result in compositional 
differences in the products. Other factors, such as natural variation in the raw 
materials or processing conditions, lead to variations in the resulting products. 
To be able to take these fluctuations into account, samples were taken at 
multiple different times over the course of the project (2013 to 2015). 
Additionally, samples were obtained from both the older Enefit 140 plant (also 
known as UTT 3000) and the newer Enefit 280 plant. In the plant the crude shale 
oil is separated into three wide technical fractions: shale gasoline, fuel oil and 
heavy oil. Gasoline and fuel oil samples were used for the models developed for 
this PhD research. 

Sample preparation 

Distillation 
 The wide fractions from the plant were further separated into narrow boiling 
fractions using distillation. Most of the distillations were simple batch 
distillations at either atmospheric pressure (an Engler distillation, ASTM D86 
standard [51]) or in a vacuum. The experimental setup for the simple distillations 
involved heating a glass bulb containing the sample, and collecting the 
vaporized compounds in a glass condenser that was cooled to about -40 °C using 
a thermostat. From there the condensed oil flowed down into a flask for 
collection. In general, fractions were taken at about 5 to 10 °C intervals. The 
ASTM D86 standard specifies using 100 ml of the oil, but due to the need to 
measure many properties of the oil fractions a larger bulb and more oil were 
used (generally around 300 ml). 
 Because the shale oil samples are unstable at higher temperatures, 
distillations could only be performed up to about 350 or 400 °C before the 
sample started to decompose. For the gasoline samples atmospheric distillation 
was sufficient, but for the fuel oil only about 40 wt% of the initial oil could be 
distilled at atmospheric pressure before reaching decomposition temperatures. 
Therefore, the project used vacuum distillation to recover the higher boiling 
fractions. For these vacuum distillations the lightest portion of the fuel oil was 
first distilled at atmospheric pressure. Then the system was evacuated and 
distillation was continued to recover heavier fractions. The setup used was the 
same except that the flasks for collecting the fractions were placed in a sealed 
container which was connected to a vacuum pump. The vacuum was usually 
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maintained at about 20 mmHg. Using vacuum distillation about 90 wt% of the 
initial fuel oil could be recovered. 
 A few distillations were also performed using a rectification column. Two 
different rectification columns were used: a plate rectification column (4.2 
theoretical plates, reflux ratio of 6:1) and a packed rectification column (15 
theoretical plates, reflux ratio of 5:1). The packing material used was wire 
spirals with a length of 3 mm and an external diameter of 2.5 mm. The wire had 
a diameter of 0.24 mm. The height of the packed column was 0.86 m and the 
diameter was 3.5 cm. Once again, the rectification column could only be used up 
to a temperature of about 350 to 400 °C to avoid decomposition of the sample. 
 After distillation the mass recovered in each fraction was measured. Then the 
sample containers were closed in a nitrogen environment to reduce the amount 
of oxygen in the sample vials, and the samples were stored in a refrigerator. 
 The wide fractions from the plant were also included in the study. Also, a 
sample approximating the original crude oil was created by mixing the gasoline, 
fuel oil and heavy oil in the ratio given by the plant’s design documents (1:3:1). 
The crude oil could not be obtained straight from the plant because the vapors 
from the retort are sent directly to the rectification column. 

Extraction 
 To develop more robust models the composition of some samples was 
artificially adjusted via extraction and/or mixing. This was an important part of 
the project because oil from different production regimes can have different 
compositions (i.e. different amounts of polar phenolic compounds). Extraction 
was performed with a 10% NaOH solution to separate out different compounds 
from the original shale oil samples. The samples were mixed several times with 
the NaOH solution in separation funnels to remove most of the polar compounds 
in the oil. To remove NaOH from the oil the samples were then washed multiple 
times with water until the water removed had a pH of 7. The oil was then dried 
in a vacuum rotary evaporator at about 80 °C. More details about the extraction 
procedure are given in Article 3 [52] and by Kogerman [53]. Using this 
procedure samples were obtained that had lower and higher contents of phenolic 
compounds than the fuel oil itself (respectively, dephenolated and phenol rich 
samples). 
 After extraction, some of the samples were also remixed with the original oil 
to give a composition that was between that of the extracted samples and the 
original oil. Some of these modified samples were then also separated into 
narrow fractions using distillation. Some of the samples were already narrow 
boiling fractions, and therefore, distillation was not performed for these samples. 

Measurement methods used 
 Table 5-1 gives the method used to measure each of the properties included 
in the database. Most of the properties were measured using commercial devices 
or according to ASTM standards, and for the remaining properties references are 
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included that give more details about the measurement method. More 
information about each measurement method is also given later in this section. 
 
Table 5-1. Measurement methods used for the properties measured for the shale oil 
database. 

Property Method Device 
Estimated 
standard 

uncertainty 

Estimated 
expanded 

uncertainty 
(95% level) 

Ref. 

Density Oscillating tube 
Anton Paar DMA 
5000M 

0.00015 
g/cm3 

0.0003 
g/cm3 

 

Refractive 
Index (nD) 

Abbe refractometer 
Anton Paar 
Abbemat HT 
refractometer 

0.0011 0.0021  

Average 
boiling 
point 

Thermogravimetric 
analysis 

Modified Du Pont 
951 
thermogravimetric 
analyzer 

2.1 °C 4.3 °C [54] 

Molecular 
weight 

Cryoscopy or vapor 
pressure osmometry 

Cryoscopy setup or 
Knauer K-7000 

7 g/mol 14 g/mol 
[55], 
[56] 

Hydrogen 
content 

Combustion analysis 
Exeter CE-440 
element analyzer 

0.084 wt% 0.17 wt%  

Carbon 
content 

Combustion analysis 
Exeter CE-440 
element analyzer 

0.36 wt% 0.72 wt%  

Sulfur 
content 

X-ray fluorescence 
(ASTM D4294) 

Lab-X 3500 
Benchtop XRF 
Analyser 

0.032 wt% 0.063 wt%  

Hydroxyl 
content 

Acetylation reaction 
and titration 

Common chemistry 
glassware and 
titration setup 

0.19 wt% 0.40 wt% 
[52], 
[57] 

Pour point ASTM D97 
Common pour point 
setup, but with 
smaller sample vial 

3 °C 6 °C [58] 

Viscosity 

Oscillating piston 
method (ASTM 
D7483) or rotational 
rheometry 

VISCOlab 3000 
viscometer or 
Bohlin Gemini 2 
rheometer 

VISCOlab 
3000: 6.4%; 
Gemini 2: 
roughly 

10% 

VISCOlab 
3000: 

10.8%; 
Gemini 2: 
roughly 

20% 

 

Infrared 
spectrum 

ATR-FTIR 
Interspec 301-X 
mid-IR spectrometer 

0.00053 
absorbance 
units (on 
average) 

0.0012 
absorbance 
units (on 
average) 

 

Density 
 Density was measured using an oscillating tube density meter (DMA 5000M, 
Anton Paar GmbH, Graz, Austria). Before and after each set of measurements 
the performance of the device was checked using distilled water and air, and the 
deviation between the measured and reference values was ensured to be less than 
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0.00005 g/cm3 before starting measurements (usually it was about 0.00001 
g/cm3). 
 However, oil samples are more difficult to measure than water or air. The oil 
samples were generally quite viscous, and with the very viscous heavy fractions 
it is possible that bubbles remain in the sample. To avoid this the DMA 5000M 
in our laboratory is equipped with a heating attachment that heats the sample at 
the inlet to the device to keep the sample hot and the viscosity low. Also, the 
heavy samples were heated before loading them into the syringe for 
measurements. Once they were in the syringe, they were again heated to lower 
the viscosity and allow any bubbles to be removed. This heated sample was then 
injected into the heated density meter to avoid bubble formation. Some samples 
were remeasured when there was a suspicion that the initial measurements were 
inaccurate, and a few densities were adjusted accordingly. Therefore, the 
uncertainties for the heavy samples may be slightly larger than those of the 
lighter fractions. 
 To assess the uncertainty of the density measurements repeat measurements 
were made with oil samples. Based on these measurements the standard 
uncertainty was roughly estimated to be 0.00015 g/cm3. 
 Densities were measured between 15.6 and 90 °C, and the thermal expansion 
coefficient and specific gravity at 20 °C for each sample was calculated from the 
experimental data. 

Refractive index 
 Using an Abbemat HT refractometer (Anton Paar GmbH, Graz, Austria) the 
refractive index was measured at 589.592 nm. The values reported were 
measured at 20 °C. The performance of the device was checked every day before 
and after measurements using distilled water, and the difference between the 
measured and reference values was kept below 0.00002. To assess the 
uncertainty for oil samples, repeat measurements were made with oil samples to 
estimate the reproducibility. From these measurements the standard uncertainty 
was estimated to be 0.0011 (expanded uncertainty of 0.0021 at the 95% level). 

Average boiling point 
 The method used for measuring the average boiling points of the samples was 
developed in our laboratory and is described in detail by Rannaveski et al. [54]. 
With this method the sample is placed in a small metal pan that is then closed 
with a lid. The lid has a small pinhole in the top. The sample is then heated in a 
TGA, and the compounds in the sample vaporize and escape through the 
pinhole. This mass loss data gives information about the boiling points of 
different portions of the sample, and from this data the average boiling point can 
be calculated. 
 The accuracy of this method was checked by measuring oil samples that had 
been distilled according to the ASTM D2892 standard [59]. The ASTM D2892 
standard distillation allows the boiling point of each fraction to be calculated. 
These standard values were then compared to the results from the TGA method, 
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and from this data the standard uncertainty of the method was calculated to be 
2.1 °C (expanded uncertainty of 4.3 °C at the 95% level). 
 This method could not reliably be used for samples with very high boiling 
points because at higher temperatures the compounds in shale oil start to 
decompose. Therefore, only samples with average boiling points below 400 °C 
were used for this study. 

Molecular weight 
 The number average molecular weight was measured using two different 
methods: vapor pressure osmometry (Knauer K-7000, Wissenschaftliche 
Gerätebau Dr. Ing. Herbert KNAUER GmbH, Germany) and cryoscopy (device 
built in house, method described in ASTM D2224 standard [55]). Benzene was 
used as the solvent for both methods. Two different methods were used because 
it was found that vapor pressure osmometry gave better results for samples with 
higher molecular weights and cryoscopy performed better for low molecular 
weight samples. This was determined by performing repeated measurements 
with both methods for a large portion of the shale oil samples. 
 For both methods calibration was performed using solutions of benzyl with 
known concentrations. Standard uncertainties were calculated based on both the 
accuracy of the calibration and tests with pure compounds. This estimation was 
described in more detail by Järvik and Oja [56]. The relative expanded 
uncertainty (at the 95% level) was determined to be between ±6 and ±7%. The 
uncertainty was smaller for fractions with lower molecular weights and larger 
for heavier samples. When taken on average, the absolute standard uncertainty 
was 7 g/mol (absolute expanded uncertainty of 14 g/mol at the 95% level). 

Hydrogen content 
 A CE-440 elemental analyzer (Exeter Analytical Inc., North Chelmsford, 
MA, USA) was used to determine the hydrogen contents of the samples. The 
estimated standard uncertainty of the hydrogen content was 0.084 wt% 
(estimated expanded uncertainty of 0.17 wt% at the 95% level). This was 
determined from measurements made with acetanilide, cyclohexanone, 
resorcinol and pyrene. The performance of the device was checked with 
acetanilide before each set of measurements. 

Carbon content 
 Carbon content was also determined using the CE-440 elemental analyzer 
(Exeter Analytical Inc., North Chelmsford, MA, USA). The estimated standard 
uncertainty of the carbon content was 0.36 wt% (estimated expanded uncertainty 
of 0.72 wt% at the 95% level). Again, the uncertainty was estimated by 
measuring acetanilide, cyclohexanone, resorcinol and pyrene, and performance 
checks were completed using acetanilide. 
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Sulfur content 
 Sulfur content was measured using a Lab-X 3500 Benchtop XRF Analyser 
(Oxford Instruments, Abingdon, United Kingdom), which uses the ASTM 
D4294 method. The standard deviation of parallel measurements was 0.0024 
wt%. The ASTM D4294 standard gave a higher reproducibility though, which 
can be calculated using Equation 6 in the standard. Using this equation the 
expanded uncertainty at the 95% level was calculated to be 0.063 wt%, and the 
standard uncertainty was then estimated to be 0.032 wt% (half of the expanded 
uncertainty). 

Hydroxyl content 
 Hydroxyl group content was measured using a titration method developed by 
Aarna and Paluoja [57], which has been used with shale oils for decades. This 
method involves acetylation of the hydroxyl groups using an excess of acetic 
anhydride. The amount of acetic anhydride remaining is determined by titration 
with KOH. A blank sample is also used, and the amount of hydroxyl groups is 
calculated from the difference in acetic anhydride between the blank sample and 
oil sample. This method also measures primary and secondary alcohols and that 
organic acids also affect the titration, but the majority of hydroxyl groups in 
Kukersite shale oil are phenols and there are not significant quantities of organic 
acids [60]. More details about the method are given in Article 3 [52]. The 
standard uncertainty of this method was evaluated by taking the standard 
deviation of parallel measurements, and was calculated to be 0.19 wt%OH 
(expanded uncertainty of 0.40 wt% at the 95% level). One measurement was 
also made using a pure compound (4-nonylphenol) and the deviation for this 
measurement was 0.17 wt%. 

Pour point 
 For measuring the pour point the ASTM D97 standard [58] was used. 
Because only a small amount of each sample was available, the standard was 
modified by using smaller vials that had internal diameters of either 1.6 or 2.5 
mm. The sample was kept at approximately 10 to 20 mm. The standard also 
states that the sample vial should be placed in a metal cylinder, not directly in 
the cooling bath. However, we found that this configuration gave a slow cooling 
rate and a minimum temperature that was significantly higher than that of the 
cooling bath. Therefore, some of the samples were placed directly in the cooling 
bath. Measurements were made to confirm that these modifications did not 
affect the results. First, a shale fuel oil sample was measured in a small vial and 
in a larger vial comparable to that specified by the standard. The difference in 
the pour point was only 0.4 °C. Second, two shale fuel oil samples were 
measured directly in the cooling bath and then in a metal cylinder. When placing 
directly in the cooling bath the temperature of the sample was continuously 
monitored, which showed that the cooling rate was still slow enough to enable 
good temperature resolution. The pour point was 0.6 and 1.6 °C lower when 
placed directly in the cooling bath. Note that all of these differences are smaller 
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than the 3 °C step size specified in the ASTM D97 standard, and can therefore 
be considered insignificant. 
 Repeat measurements were not made, but the standard states that the 
reproducibility of this method is 6 °C (that is, only 1 measurement in 20 would 
deviate by more than 6 °C). This was take to be the expanded uncertainty of the 
pour point measurements at the 95% level. Half of this, or 3 °C, was take to be 
the standard uncertainty. 

Viscosity 
 Two different instruments were used for measuring viscosity: a VISCOlab 
3000 viscometer (Cambridge Viscosity, PAC L.P., Houston, Texas, USA) and a 
Bohlin Gemini 2 rotational rheometer (Malvern Instruments Ltd, Malvern, 
United Kingdom). The VISCOlab 3000 uses the oscillating piston method [61]. 
Measurements with the rheometer were performed using a stainless steel cone 
and plate geometry (either a 40 mm/4° cone or a 25 mm/2.5° cone). Viscosity 
standards were used to check the performance of instruments. From these 
measurements the standard uncertainty of the VISCOlab 3000 was found to be 
6.4%. At 37.8 °C the relative deviations with the Gemini 2 were 2%, 2% and 4% 
for the three standards. At higher temperatures fluctuations in the temperature 
occurred that affected the accuracy of the Gemini 2. We estimate that, on 
average, the standard uncertainty at higher temperatures is about 10 to 15%. 
Some of the samples were measured on both instruments, and the measured 
viscosities generally agreed to within 10%. 69 of the samples were measured at 
multiple temperatures between 17 and 151 °C. 

Infrared measurement procedure 
 Because the infrared spectra are a fundamental part of this work, a more 
detailed description of the measurement procedure is warranted. The device used 
was an Interspec 301-X portable spectrometer (Interspectrum OÜ, Tõravere, 
Estonia). It measured in the mid-IR region (wavelength range from 400 to 7000 
cm-1). It is a Fourier transform infrared (FTIR) spectrometer, and for measuring 
the oil samples it was fitted with a single bounce, ZnSe, attenuated total 
reflection (ATR) measurement accessory. The angle of incidence was 45 
degrees. Also, because of the design of the instrument, the infrared beam passed 
through the open laboratory air. Therefore, some additional noise occurred in the 
spectra in the absorption regions of water vapor in the air. 
 Measurements were taken at a resolution of 1 cm-1 over the range 600-4000 
cm-1. A cosine apodization was used (more specifically, 
cos(0.5∙π∙x)∙(cos(0.5∙π∙x))2). The recorded spectrum was taken as the average of 
10 scans. The device was switched on at least a couple of hours before beginning 
measurements to allow the temperature of the IR source to stabilize. At the 
beginning of a set of measurements, the spectrum of distilled water was 
measured to check the performance of the device. This ensured that the ATR 
crystal was clean and that the response of the spectrometer had not changed. 
Between samples the crystal was cleaned using toluene and isopropyl alcohol. 



42 

Then a spectrum was recorded with no sample to ensure that the crystal was 
clean. 
 The spectra were preprocessed by removing the data below 700 cm-1, 
removing the carbon dioxide peaks between 2300 and 2400 cm-1 and applying a 
baseline correction. The baseline correction was performed by fitting a 3rd order 
polynomial to the points in the ranges 2000-2200 cm-1 and 3700-4000 cm-1. 
Also, when comparing a measured spectrum for toluene with a spectrum 
calculated from standard optical constant spectra [62], it was found that the 
wavenumbers given by the Interspec 301-X spectrometer were slightly shifted. 
The magnitude of the shift was determined by comparing the peak locations 
from the Interspec spectrum with those of the standard spectrum. Then, a linear 
line was fit to the data (Equation 5-1) and this equation was used to correct the 
wavenumbers of the spectra. 
 

௧ௗߥ ൌ െ0.0005950127533633 ∙ ߥ  0.009786571607383 (5-1) 
 
 To estimate the uncertainty of the infrared spectra, 10 parallel measurements 
were made with an oil fraction. These were preprocessed using the same method 
used for all the other spectra. The standard deviation of the measurements at 
each wavelength was taken to be the standard uncertainty of the measurements, 
and the expanded uncertainty at the 95% level was calculated from this. To 
make these uncertainties more understandable, they are expressed as relative 
uncertainties. The relative uncertainties were calculated in reference to the 
average oil spectrum (the mean of all measured oil spectra), and these relative 
uncertainties are shown in Figure 5-5. The median standard uncertainty was 
1.8%. When looking at Figure 5-5 it can be seen that regions with lower values 
on the average spectrum generally have higher relative uncertainties, as would 
be expected. However, the largest errors can be seen in the water vapor 
absorption regions, especially between 1400 and 1700 cm-1 and above 3100 cm-1. 
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Figure 5-5. Relative uncertainties of the infrared spectra at each wavenumber. 
Expanded uncertainties were calculated at the 95% level. 
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6. INFRARED SPECTRA 
 
 Some general molecular structures present in the oil can be observed from 
infrared spectra. These relationships between the spectra and the bonds and 
functional groups contained in the samples help to explain how oil properties 
can be predicted from infrared spectra. 
 Figure 6-6 and Figure 6-7 show spectra of a whole fuel oil sample and a 
whole shale gasoline sample, and also point out some of the features that can be 
linked to specific functional groups or bonds. These group assignments were 
mainly based on the group frequencies given by Coates [28]. Notice the absence 
of the features related to hydroxyl groups in the shale gasoline spectrum. 
 

 
Figure 6-6. Infrared spectrum of fuel oil from the Enefit 140 solid heat carrier retort. 

 
Figure 6-7. Infrared spectrum of shale gasoline from a solid heat carrier retort. 
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 The changes with boiling point and hydroxyl group content can better be seen 
from Figure 6-8, Figure 6-9, Figure 6-10 and Figure 6-15. The figures showing 
the effect of boiling point were created by plotting the fractions from one 
gasoline distillation and one fuel oil distillation. The trends are hard to 
completely grasp at first glance, and looking at the zoomed in views of Figure 
6-9 and Figure 6-10 helps. At first, absorbance in most regions of the spectrum 
increases with boiling point. Once the fuel oil region is reached, at about 200 °C, 
then peaks caused by hydroxyl groups become prominent. At about 320 °C then 
the trend changes. The peaks related to hydroxyl groups and aromatic structures 
start to decrease, and at the same time the peaks due to aliphatic groups 
(saturated C-H bonds) continue to increase. This shift occurs because in the 
heavier fractions the size of the molecules increases. Although most molecules 
still contain a hydroxyl group, their relative proportion in the mixture begins to 
decrease. Instead, the straight aliphatic side chains attached to the aromatic core 
increase in length, which leads to increases in the spectral areas related to methyl 
and methylene C-H groups. 
 

 
Figure 6-8. Changes in the infrared spectra of shale oil fractions with progressively 
higher boiling points. 
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Figure 6-9. Changes in the infrared spectra of shale oil fractions over the range of 700 
to 1800 cm-1. 

 
Figure 6-10. Changes in the infrared spectra of shale oil fractions over the range of 
2800 to 3000 cm-1. 

 To better illustrate how peaks in the spectra change as the boiling point of a 
narrow fraction increases, the absorbance at 4 different wavenumbers was 
plotted versus the average boiling point of the sample (Figure 6-11, Figure 6-12, 
Figure 6-13 and Figure 6-14). The figures only show similar samples obtained 
using simple (Engler) distillation to emphasize the trend that generally occurs 
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among fractions from a single distillation. Although the absorbance values 
cannot directly be equated with the concentration of the given functional group, 
the plots do show how systematic structural changes between the fractions can 
be observed on infrared spectra. 
 

 
Figure 6-11. How absorbance related to methylene C-H bonds changes as a function of 
boiling point. 
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Figure 6-12. How absorbance related to aromatic rings changes as a function of boiling 
point. 
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Figure 6-13. How absorbance related to C-O bonds changes as a function of boiling 
point. 
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Figure 6-14. How absorbance related to alkene and aromatic C-H bonds changes as a 
function of boiling point. 
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the composition of functional groups in the fuel remains largely the same, even 
though the average boiling points range over about 100 °C. 
 

 
Figure 6-15. Changes in the infrared spectra caused by changes in the quantity of 
phenolic compounds. The fractions displayed have essentially the same average boiling 
point (between 310 and 320 °C). 

 The systematic changes shown here that accompany changes in the boiling 
point of the samples are likely what give the information necessary for 
predicting molecular size properties since infrared spectra do not directly contain 
information about molecular size. However, because the spectra of heavier 
fractions are quite similar, this may make it more difficult to predict the 
properties of these samples. This problem could also occur if samples were 
prepared in a different manner, for instance if a light and heavy fraction were 
mixed the resulting spectrum might resemble a middle range fraction. This 
spectrum might still give good results for some average properties, but for 
properties for which a linear mixing rule does not apply (e.g. viscosity or vapor 
pressure) there may not be enough information in the spectrum to enable a good 
prediction.
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7. MODEL CREATION PROCESS 
 
 
A predictive model is always limited by the quality of the data used for 
constructing the model and the strength of the relationship between the input and 
predicted properties. However, inaccuracies in the model itself also affect the 
model performance, and therefore, when creating a model the goal is to do so in 
such a way that the model is as true to the underlying relationship as possible. 
This chapter discusses some of the aspects of model creation that need to be 
taken into account to get performance that is close to the limit determined by the 
data and relationship. The specific methods used for this study are also given. 
First though, the parameters used in this study to estimate the error of a model 
are presented.  

Error estimation 
 As mentioned, for regression when the number of variables is larger than the 
number of observations the error of the model must be estimated using separate 
test observations that were not used in the regression. This is because it is easy 
for a model to over fit the data, which would result in great accuracy with the 
regression set, but would actually cause the model to give large errors when 
predicting values for new observations. 
 The method used here for error estimation was cross validation, which 
consists of dividing the samples into groups and sequentially leaving one group 
out of the regression while calculating the model. The deviation for each sample 
when it is left out is then used to estimate the error of the model. Commonly, the 
RMSE of these cross validation values is then presented as the error of the 
model. 
 As noted, the regression parameters were also optimized using the cross 
validation error. To ensure that the error estimate was not influenced by the 
optimization process, a second outer cross validation loop was used for 
estimating the error. So all together, the regression was performed by dividing 
the data set into 15 groups for the outer 15 fold cross validation loop, and then 
leaving each group out once, a model was found by minimizing an inner 5 fold 
cross validation of the included samples. The error was then estimated using the 
value predicted for each sample when it was left out as part of the 15 fold outer 
loop. After the error had been estimated in this manner, the final regression 
model was found using all of the samples in the data set. 
 Four error statistics were calculated from the cross validation values to help 
characterize the performance of each model: root mean squared error (RMSE), 
average absolute deviation (AAD), average absolute relative deviation (%AAD) 
and the Pearson correlation coefficient squared (R2). These were calculated 
using Equations 0-1 through 0-4. 
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In Equations 0-1 through 0-4 θpred is the predicted property value (found during 
cross validation), θactual is the actual property value and n is the number of data 
points. 
 The distribution of residuals obtained through cross validation was also used 
to estimate the 95% prediction interval for each model. To do so, the standard 
deviation of the residuals was multiplied by the t-statistic. For machine learning 
regression methods the degrees of freedom is generally not equal to the number 
of model parameters [63], and instead it must be estimated. The simple solution 
used here was to fit the t distribution to the residuals by adjusting the effective 
degrees of freedom. This procedure gave reasonable values for the degrees of 
freedom for most of the properties. However, for a few of the parameters with 
small sample sizes the fitted value was unrealistically large, and instead a 
conservative value of 5 was used for those properties. 

Outlier removal 
 Because the quality of the reference database affects the accuracy of the 
resulting model, it is important to check the data. A large amount of research has 
been done on outlier detection, and here we do not attempt to make any 
summary or comparison of the many different methods. Rather, we describe the 
procedure we have used. 
 Some outliers can be easily detected as having an extreme value for one of 
the data variables, and we started by investigating samples that had extreme 
property values. As an example, some of the extracted samples had densities that 
were much higher than all the other samples, and a more accurate model was 
obtained when these samples were left out. 
 It is more difficult to detect outliers that are not extremes for any one 
variable, but have a combination of variable values that does not fall in line with 
the rest of the samples. For investigating samples based on combinations of 
variables, we calculated the pairwise Euclidean distances between each of the 
samples based on the input data. Then we examined the distributions of the 
distances and selected those that had extreme mean distances for further 
investigation. We also viewed samples based on the value for 3% of the 
cumulative distribution, that is the distance which was larger than 3% of the 
pairwise distances for the sample. This enabled us to investigate how well the 
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sample fit with other samples that were similar to it, rather than with all the data 
as a whole. 
 The residuals of the model also provide a good way to detect outliers. Those 
samples with large residuals often are different from the main group of samples, 
and those differences keep the model from being able to describe these outlying 
samples. 
 Those samples that had been identified as outliers were scrutinized to 
determine if they should be left out. If needed, some samples were remeasured to 
determine whether or not a measurement error had occurred. 16 samples were 
completely removed from the database because their infrared spectra contained 
significant noise. All but one of these samples had been measured at the very 
start of the project before the infrared measurement procedure had been 
completely worked out. 10 of the extracted samples were only used for the 
hydroxyl content model, and were left out of all other models. These samples 
had a significantly different chemical composition due to the way they were 
prepared, and this resulted in infrared spectra that stood out from the rest of the 
samples. Additionally, they had extreme values for many of the properties. 
These abnormalities limited the accuracy of most of the models. But because 
they had such large amounts of phenolic compounds, they actually improved the 
performance of the model for hydroxyl content. Besides these general removals, 
additional samples were only removed as outliers if it was clear there was an 
error with the measured property value. 
 A few more outlying samples were also identified when comparing the 
residuals for different properties for each sample. For instance, the two samples 
with the largest residuals for average boiling point also had some of the largest 
residuals for many of the other properties. Consistently large residuals across 
different models indicates that there was a problem in the spectra or preparation 
done for these samples. However, because no anomalies could be detected in the 
spectra, this assumption could not be confirmed, and these samples were not 
removed from the database. In total, 8 of these samples were identified, most 
from different distillations. Given that there were several hundred samples in the 
database, these 8 outliers constitute only about 2 to 3% of all samples. 

Sample selection 
 A related step is selection of the calibration samples. For best results, the 
calibration samples often need to be well spaced throughout the range of sample 
variation for which the model is expected to work [26],  [64],  [65]. Chung [26] 
points out that often problems arise when the full range of expected variations is 
not taken into account, and further states that it is usually not useful to include a 
disproportionally large number of samples that have similar compositions.  
Circumstances do not always allow such an optimal selection of calibration 
samples, as was the case with the research done for this PhD dissertation. 
Weighting certain samples in the regression process to even out their relative 
effect may also help correct for an uneven distribution. For the research done 
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here, the sample preparation process was done as part of a larger research 
project, and therefore, the samples were not created with the goal of ensuring an 
even distribution among composition and properties. 
 To determine how many samples are needed to obtain an accurate model, a 
test was run using specific gravity and average boiling point, which had been 
measured for most of the samples. First, one-third of the samples were separated 
out to be used as the test set for calculating the accuracy of the model. Then, 
some of the remaining samples were randomly selected to be used as the 
calibration set. The number of samples used was varied. Then a support vector 
regression model (using a mixed kernel [43]) was created and the RMSE of the 
model was calculated using the test set. This was repeated multiple times, and 
the samples used in the test set were also changed to avoid any bias that may 
have resulted due to the samples chosen for the test set. The results of this test 
are shown in Figure 7-16. 
 

 
Figure 7-16. The RMSE of a support vector regression model as a function of the 
number of calibration samples used. The orange line represents the RMSE obtained 
when using all the samples. 

 As Figure 7-16 shows, having too few samples in the calibration set clearly 
affects the accuracy of the model. However, when using about 40 samples the 
error can already be at the same order of magnitude as that of a model using all 
the samples (about 300 samples). Using more than about 100 samples makes 
essentially no difference. It should be noted that these numbers are specific to 
this problem, and the exact effect of sample size likely depends on the given 
dataset. 
 The scatter seen in Figure 7-16 shows that other factors also influence the 
RMSE of the model. One such factor is which samples are included in the 
calibration set. For example, if the calibration set did not contain a certain type 
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of sample (e.g. gasoline samples or heavy samples), then the resulting RMSE of 
the model would be larger than for a calibration set in which the full range of 
samples was well represented. This helps to explain the difference between 
models that used the same number of calibration samples. What can also be seen 
is that the spread of the scatter decreases as more calibration samples are used. 
This leads to a significant conclusion: if only a smaller number of calibration 
samples is going to be measured, then it is important to pay attention to which 
types of samples are included. When a large number of calibration samples can 
be measured it may not be so important to make sure that the calibration set is 
well balanced because there is a greater chance that all the different types of 
samples will be well represented, at least as long as the calibration samples span 
the range of samples expected. 
 Therefore, how the samples are prepared is important. Although 40 samples 
could be quickly made by performing two distillations of the same wide 
industrial fraction, the model would be more accurate if the 40 samples were 
taken from a variety of industrial fractions. This is because variation naturally 
occurs in raw materials and processing conditions. Using samples gathered over 
a longer time would allow the model to take these variations into account. To 
test how many distillations might be needed to get good results, models were 
created using only some of the distillations. Table 7-2 and Table 7-3 show the 
results for specific gravity and average boiling point. The error statistics given in 
the tables only take into account the fuel oil and gasoline samples because the 
extracted samples have compositions that fall outside of the range that could be 
expected in the plant. When using 5 distillations the accuracy of the model was 
close to that of the final model that included all samples. Performing 5 
distillations would require a significant amount of work, but based on Figure 
7-16 not all of the fractions would need to be measured. 
 
Table 7-2. How the accuracy of the model for specific gravity is affected by the number 
of different distillations the calibration samples are taken from. Each cell contains the 
RMSE and the 95th percentile (given in italics) of the residuals for the fuel oil and 
gasoline samples. 

    Number of distillations with extracted samples 
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0.00741 
0.01379 

0.01035 
0.01936 

   

5 
0.00487 
0.00987 

 
0.00568 
0.01175 

 

7 
0.00401 
0.00871 

0.00412 
0.00826 

0.00454 
0.00948 

 

22       
0.00364 
0.00758 
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Table 7-3. How the accuracy of the model for average boiling point is affected by the 
number of different distillations the calibration samples are taken from. Each cell 
contains the RMSE and the 95th percentile (given in italics) of the residuals for the fuel 
oil and gasoline (units are kelvin). 

    Number of distillations with extracted samples 

    0  1  2  6 

N
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d
is
ti
lla

ti
o
n
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9.4 
19.6 

8.3 
16.7 

   

5 
7.7 
16.0 

 
7.3 
13.6 

 

7 
5.8 
10.9 

6.4 
11.6 

7.1 
14.3 

 

19       
5.6 
10.9 

 
 As mentioned, extraction had been used to prepare some of the samples with 
the hope that the wider range of compositions would make predictions more 
robust towards sample variations that naturally occur in the plant. The effect of 
using extracted samples was also investigated by using extracted samples in 
place of some of the fuel oil distillations. However, it was difficult to make 
conclusions based on the results. A few points showed better results when using 
extracted samples, a few showed poorer results and many were about the same. 
This may indicate that there is no advantage in using the extracted samples, but 
it is also possible that the set of samples in the database did not vary enough. For 
more extreme samples, that occur less frequently in the plant, including 
extracted samples may be important for obtaining good results. 
 So, machine learning techniques are often sensitive to the distribution of 
calibration samples chosen, and it is best to select samples that cover the full 
range of expected variations. To get an idea of how the models created here 
might perform when used beyond the range of the calibration samples, a model 
for hydroxyl content was created with all the dephenolated and gasoline samples 
left out. Doing so removed most of the samples with low hydroxyl group 
contents. The difference between the values predicted using this model and the 
model based on all the samples is shown in Figure 7-17, and shows a consistent 
positive bias for samples with low hydroxyl contents. These samples have 
hydroxyl contents between 0 and 3 wt%, so a consistent positive error of about 
0.4 wt% is relatively large. So, extending a model to predict samples with low 
hydroxyl contents would give larger errors if these types of samples were not 
included in the calibration set. Removing the dephenolated samples also seems 
to have affected the results for the phenol rich samples that had the highest 
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concentration of hydroxyl groups. All of these samples were created from the 
same distillation and extraction as the dephenolated samples, and therefore, the 
spectra of the dephenolated samples may contain information that is also helpful 
in predicting values for these phenol rich fractions. 

 
Figure 7-17. Hydroxyl contents predicted using a model that did not include 
dephenolated samples minus the predictions from one that included all samples. Black 
points indicate dephenolated samples. 

 A second, similar test was performed by creating models using only 5 
distillations, and using those models to predict 3 other distillations. 1 of the 5 
was the gasoline distillation, and the other 4 were fuel oil vacuum distillations 
(simple batch distillations). The other distillations were prepared using either a 
rectification column or a two-step batch distillation. For the two-step distillation 
a first batch distillation was performed to collect only about the first 30 to 40% 
of the fuel oil, and then this lighter sample was distilled again using batch 
distillation. Therefore, fractions from these distillations had a somewhat 
different composition than those from the vacuum distillations. In this way the 
ability of the model to predict samples created using different distillation 
methods was assessed. 
 Models were created for specific gravity and average boiling point, and the 
results of this test are shown in Figure 7-18 and Figure 7-19. A similar trend 
emerges, where samples with the lowest specific gravities and boiling points 
have the largest residuals. From there the residuals decreased and were generally 
within the RMSE of the models that included all the samples (RMSE of 0.00467 
for specific gravity and 6.95 K for boiling point). So, the models did not 
extrapolate well for those lightest fractions, but they seemed to provide accurate 
predictions for the heavier samples that were more similar to the calibration 
samples, even though these samples were produced using a different distillation 
method. 
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Figure 7-18. Residuals that occurred when using a model based on 5 distillations to 
predict specific gravities for samples that were produced using a different distillation 
method. 

 
Figure 7-19. Residuals that occurred when using a model based on 5 distillations to 
predict average boiling points for samples that were produced using a different 
distillation method. 

 Because using more samples was seen to increase the chances of obtaining a 
model with good accuracy, for this study all available samples were used. For 
some of the properties only a limited number of samples had been measured, 
which made it even more important to use all the samples. Table 7-4 shows the 
number of samples used for each property. The “Fuel oil (batch)” category refers 
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to fuel oil fractions obtained using simple batch distillation (Engler distillation or 
a similar method at low pressure), and the “Fuel oil (other)” category includes 
samples obtained using a rectification column or two-step batch distillation. 
“Wide samples” refers to the original wide industrial fractions obtained from the 
plant and crude shale oil samples. 
 

Table 7-4. Number and type of samples used in creating the model for each property. 
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Specific gravity  355  16  171  38  75  45  10 

Refractive index param.  327  14  150  37  74  45  7 

Average boiling point  229  16  103  29  52  29  0 

Molecular weight  277  16  135  9  71  44  2 

Carbon content  257  16  123  18  49  43  8 

Hydrogen content  258  16  123  18  49  43  9 

Sulfur content  59  16  40  0  0  0  3 

Hydroxyl content  57  0  19  9  6  21  2 

Pour point  68  0  28  0  19  19  2 

Thermal expansion coef.  319  16  138  38  73  45  9 

Viscosity at 37.8 °C  115  0  29  2  44  38  2 

Variable selection 
 Large input data sets, such as spectra, can contain hundreds or thousands of 
variables. Many of these variables can be closely related and contain similar 
information, that is, they are redundant. Also, there can be variables that do not 
correlate very strongly, if at all, with the parameter to be predicted. Removing 
uninformative or redundant variables can make a model simpler. This in turn can 
make the model more robust to noise and fluctuations, can improve the accuracy 
and can significantly reduce the computing time needed for calculating the 
model. 
 Many different methods for variable selection have been developed. 
Mehmood et al. [66] gave a review of methods used with partial least squares 
regression. They categorized the methods into three groups: filter, wrapper and 
embedded methods. These can be used to describe variable selection methods 
for other regression techniques as well. 
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 Filter methods rank variables based on a criterion and then remove the 
variables for which the criterion is below an arbitrary cutoff. Often correlation 
coefficients are used, such as the Pearson correlation coefficient (R) or some 
type of mutual information parameter. For example, the correlation coefficient is 
calculated between each wavelength in a spectrum and the property to be 
predicted, and then those that do not correlate well enough (as defined by the 
user as a cutoff value) are removed from the data set. Other common criteria 
include the weight of the variable in the regression model, the Akaike 
information criterion and the RMSE of a small group, or window, of the 
variables (which is termed the moving window method [67]). 
 Like filter methods, wrapper methods use a criterion to rank and separate 
variables, but the cutoff is determined by optimization of the error of the model. 
That is, instead of just assigning a set cutoff, different cutoffs are tried with the 
goal of finding the cutoff that minimizes the error. These methods usually give 
better performance than filter methods, but also cost more computationally 
because the regression must usually be performed many times. 
 Embedded methods work by incorporating variable selection directly into the 
regression algorithm. Rather than calculating the whole model before choosing 
variables to remove, as with wrapper methods, a step is added to the regression 
algorithm in which certain variables are removed or down weighted. These 
methods are generally not as universal as other methods because they are closely 
related to the method algorithm. Also, they are usually more complex to 
implement because they involve modifying the underlying algorithm of the 
regression method. However, they can often yield good results in a shorter 
period of time than wrapper methods. 
 In addition to all these methods, some variables can be eliminated just by 
knowledge of the problem at hand. For example, large sections of the spectrum 
can be removed where infrared absorption does not occur. Also, if only certain 
peaks are known to be of interest or related to the parameter to be predicted, then 
the spectrum can be reduced down to that region of interest. 
 Many different methods were tested during this research, but in the end most 
of the spectrum was used. Wrapper methods initially seemed to give good 
results, but they took a long time to carry out and any improvements in accuracy 
did not appear to be pronounced. This was the case with the searching 
combination moving window partial least squares method [68] and when using a 
genetic algorithm for variable selection. With filter methods often large sections 
of the spectrum were ranked fairly highly, and the best results were generally 
achieved when using most of the absorbing area of the spectrum. The Joint 
Mutual Information Maximization method [69] seemed to be one of the more 
promising filter type methods, but initial tests with it did not yield any 
improvements in accuracy. So, it was decided to simply use the entire absorbing 
area (700 – 1800 and 2750 – 3600 cm-1). The one exception was the model for 
hydroxyl group content. This model was created first and it had been found that 
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a somewhat narrower range (907 – 1464 cm-1) gave a better RMSE of 0.350, as 
opposed to 0.411 with the full range. 

Regression method 
 As discussed in Chapter 3, different multivariate regression methods use 
different underlying structures. Some methods, such as a neural network, can be 
called universal approximators. That is, they have no predefined structure and 
can fit the data regardless of the shape the data takes. Other methods, such as 
PLS regression, have a linear structure to them. PLS methods have also been 
developed that have other structures, such as poly-PLS, which uses polynomials 
instead of linear fits [34]. Although at first it may seem that a universal 
approximator would be the best choice, when this type of model is extrapolated 
to regions where training data was not available then large errors can occur 
because the underlying structure is only determined by the data [24]. Therefore, 
the choice of which model type to use depends on the given problem. 
 For this study three different model types were tested: PLS regression and 
support vector regression with two different types of kernels (radial basis 
function and a mixed kernel that combined the polynomial and radial basis 
function kernels). These were chosen to investigate the tradeoff between 
structure and flexibility. PLS regression is the most rigid because it is a linear 
method. When using the radial basis function kernel with support vector 
regression then it becomes a universal approximator that can match the structure 
of any shape of data. When using a mixed kernel, as suggested by Smits and 
Jordaan [43], support vector regression can be given properties between these 
two extremes. For this study, we used a mixed kernel that combined the 
polynomial and radial basis function kernels. The kernel was mostly weighted 
towards the polynomial behavior, and the radial basis function portion was only 
a small amount of the overall kernel (always less than 20%). 
 A comparison of the RMSEs of the different model types is given in Figure 
7-20. For each property, the models were created using the same samples and 
wavenumbers. To determine if the differences between the different methods 
were significant, each regression method was repeated at least 15 times while 
randomly changing the order in which samples were left out during cross 
validation. The Mann-Whitney test [70] was then used with these sets of 15 
values to determine if the differences between the best performing method and 
the other methods were significant at the 95% level. All of the differences were 
significant except for with molecular weight when comparing the mixed and 
radial basis function methods. 
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Figure 7-20. Performance of different model types for each parameter. 

 In addition to comparing the RMSEs, the spread was compared using the 95th 
percentile of the residuals for each model. This comparison is shown in Figure 
7-21. The results are similar to those given in Figure 7-20 for RMSE: the PLS 
model for pour point gives the smallest spread, but for the other properties 
support vector regression has a lower 95th percentile or the difference between 
the two is small and probably within the uncertainty of the metric. 
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Figure 7-21. Comparison of the 95th percentile of the residuals for different model 
types. 

 Support vector regression with the mixed kernel generally gave the best 
results. This suggests that the relationships between many of the properties and 
the spectral values were somewhat nonlinear. And indeed, nonlinearity was 
observed when visually examining the relationship between selected 
wavelengths and specific gravity and molecular weight. Notably, the PLS model 
was actually more accurate for pour point, and therefore, PLS regression was 
used to create the final model for this property. 
 Therefore, the main model type used in this study was support vector 
regression with a mixed kernel [43]. The mixed kernel combined the polynomial 
and radial basis function kernels. The mixing coefficient was used to weight the 
polynomial portion and one minus the mixing coefficient was used as the weight 
for the radial basis function portion. The only property for which this model type 
was not used was pour point. For pour point PLS regression was used instead. 

Model parameter optimization 
 For PLS regression optimization was simple because only the number of 
components (or factors) needed to be selected. Models were created using 1 to 
24 components, and the smallest number of factors that had a RMSE within 2% 
of the minimum was selected. This was done because sometimes several 
components had RMSEs close to the minimum value, and in this case a simpler 
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model (i.e. with fewer components) was preferred due to the expectation that a 
simpler model is more robust. 
 Finding regression parameters for support vector regression was more 
difficult because 6 different parameters needed to be determined. Also, support 
vector regression takes more time than PLS regression, which reduces the 
number of parameter combinations that can be tried in a reasonable timeframe. 
Unfortunately, simpler gradient based techniques did not give satisfactory 
results, likely because the solution space contained multiple local minima. 
Global optimization techniques gave the best results because they could search 
over a wider range of possible values. The differential evolution solver [71] 
implemented in the SciPy package [72] was selected because it was a global 
technique that resulted in a more accurate model than other techniques, but could 
also converge in a reasonable amount of time. The optimization criterion was the 
RMSE of the 5 fold cross validation samples. The one exception was when 
predicting the viscosity at 37.8 °C for which the root mean squared relative error 
of cross validation was used because relative error gives a more uniform 
estimate of the error for viscosity.  
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8. MODELS FOR TEMPERATURE INDEPENDENT 
PROPERTIES 

Structure parameters 
 The two most commonly used parameters that are related to molecular 
structure are specific gravity (or density) and the refractive index. Here the 
refractive index parameter is used instead of the measured refractive index. The 
refractive index parameter is calculated using the equation given by Huang [73], 
which is shown here as Equation 8-1, where I is the refractive index parameter 
and n is the refractive index. 
 

ܫ ൌ
మିଵ

మାଵ
 (8-1) 

 
 Of course, specific gravity and the refractive index are temperature 
dependent properties, but they are often measured at a single standard 
temperature and used as a characteristic parameter. In this sense, these properties 
at a specified temperature are temperature independent properties. The 
hydrogen-carbon ratio is also sometimes used as an energy parameter, but this 
parameter will be discussed later in this chapter in the section about chemical 
composition. 
 The accuracies and regression parameters for the models for the specific 
gravity and the refractive index parameter are given in Table 8-5. The specific 
gravity and refractive index parameter at 20 °C were used, and the specific 
gravity was calculated using the density of water at 20 °C as the reference. The 
residuals for each fraction can be seen in Figure 8-22 and Figure 8-23. In all of 
the residual plots in this chapter different markers have been used to distinguish 
between different types of samples. Those marked “Fuel oil (batch)” were 
produced using simple batch distillation (similar to an Engler distillation) and 
those marked “Fuel oil (other)” were produced using some type of multistage 
distillation (either a rectification column or a two-step batch distillation). 
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Table 8-5. Accuracies and regression parameters for the multivariate models for 
predicting energy parameters. 

 
Specific gravity 

(20/20) 

Refractive 
index 

parameter 

RMSE 0.00467 0.00174 

AAD 0.00308 0.00112 

%AAD 0.32% 0.28% 

R2 0.997 0.995 

95% pred. interval ±0.011 ±0.0042 

Range 0.714 – 1.102 0.339 – 0.449 

Number of samples 355 327 

Std. uncertainty 0.00015 0.000599 

R
eg
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ss

io
n

 p
ar
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et

er
s C 1.272 1.073 

ε 0.003501 0.003880 

γ 0.8605 0.7904 

Degree 2 2 

Zero coefficient 4.166 4.769 

Mixing coefficient 0.9983 0.9727 
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Figure 8-22. Residuals for the model for specific gravity at 20 °C. 

 
Figure 8-23. Residuals for the model for the refractive index parameter. 

 The models for these parameters give average relative deviations (%AAD) 
that are less than 1% and R2 values greater than 0.994, which shows the models 
provide a good fit. Some larger residuals can be seen in Figure 8-22 and Figure 
8-23. Some of these samples were remeasured and their values corrected, but 
some of the samples could not be remeasured. Even though the models fit the 
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data better than for most other properties, the RMSE for the specific gravity 
model was still significantly higher than the measurement uncertainty of the 
experimental data. This anomaly is further discussed in Chapter 10. 

Size parameters 
 The main size parameters used are average boiling point and molecular 
weight. A large number of samples also had data for these properties, but the 
measurement uncertainty for these properties is higher than for specific gravity 
or the refractive index parameter. Also, note that only data for boiling points up 
to 400 °C were used because the measurement method could not reliably 
measure samples with higher boiling points. This is one reason the measurement 
uncertainty, and resulting model accuracy, are better for boiling point than for 
molar mass. The model parameters and resulting accuracies can be seen in Table 
8-6, and the residuals are plotted in Figure 8-24 and Figure 8-25. 
 
Table 8-6. Accuracies and regression parameters for the models for molecular size 
parameters. 

 Boiling point Molar mass 

RMSE 6.95 K 11.8 g/mol 

AAD 4.96 K 7.96 g/mol 

%AAD 0.90% 3.37% 

R2 0.991 0.978 

95% pred. interval ±16 K ±27 g/mol 

Range 353 – 673 K 80 – 435 g/mol 

Number of samples 229 277 

Std. uncertainty 2.1 K 7 g/mol 

R
eg
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n
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ar
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s C 17.79 1.022 

ε 0.01543 0.003438 

γ 0.4687 0.4383 

Degree 1 2 

Zero coefficient 1.055 3.780 

Mixing coefficient 0.9992 0.8412 
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Figure 8-24. Residuals for model for predicting average boiling point. 

 
Figure 8-25. Residuals for the model for molecular weight. 

 Both models have an RMSE that is relatively close to the measurement 
uncertainty, although the model for molecular weight had a lower R2 value of 
0.978. The lower accuracy for molecular weight seems to be caused by the 
heavier samples because Figure 8-25 shows that the largest residuals were for 
these heavy samples. It seems likely that the experimental measurements were 
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least accurate for those samples with high molecular weights, which would lead 
to the higher residuals seen with these samples. The model for molecular weight 
also showed greater complexity, which is indicated by the lower value for the 
mixing coefficient (0.8412). This means the model had more of the nonlinear 
radial basis function character to it. Again, this greater complexity seems to be 
caused by the heavier fractions because when using only molecular weights up 
to 400 g/mol then even a linear PLS model could achieve a better RMSE (about 
9.4 g/mol). 
 Two samples clearly had larger residuals than the rest for the average boiling 
point model. These two samples also had some of the largest residuals for the 
other properties. This indicates that there may have been a problem with the 
infrared spectra or in sample preparation. However, the infrared spectra were 
visually inspected and no distortions could be seen. Because it could not be 
confirmed that an error had occurred with these samples, they were left in the 
database. 

Chemical composition 
 Elemental composition is an important set of data that is regularly measured 
for fuel samples, and models were also developed to predict elemental 
composition for Kukersite shale oil. Sulfur content is especially of interest 
because sulfur form pollutants during combustion, and there are often 
regulations regarding their concentrations or the resulting pollutant amounts. 
However, sulfur is usually present in such small amounts that peaks related to its 
functional groups usually do not appear on infrared spectra. This was also true 
for the samples in this study: peaks caused by sulfur groups could not be visibly 
identified from the spectra. For this reason, Trygstad et al. [31] suggested that 
any relationships between infrared spectra and sulfur content is weak. 
 Another important parameter for Kukersite shale oil is the content of 
hydroxyl groups, since these polar functional groups affect the physical and 
thermodynamic properties of the fuel. Therefore, a model was also created to 
predict this parameter. 
 The models for these parameters are described in Table 8-7 and Table 8-8, 
and Figure 8-26, Figure 8-27, Figure 8-28 and Figure 8-29 show how the 
residuals are distributed. 
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Table 8-7. Accuracies and regression parameters for the models for carbon and 
hydrogen content. 

 Carbon Hydrogen 

RMSE 0.564 wt% 0.133 wt% 

AAD 0.376 wt% 0.102 wt% 

%AAD 0.46% 1.05% 

R2 0.916 0.988 

95% pred. interval ±1.3 wt% ±0.28 wt% 

Range 76.4 – 85.6 wt% 7.8 – 13.2 wt% 

Number of samples 257 258 

Std. uncertainty 0.36 wt% 0.085 wt% 
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ar
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s C 21.68 0.5429 

ε 0.06146 0.003568 

γ 0.001211 0.5297 

Degree 1 2 

Zero coefficient 3.789 3.615 

Mixing 
coefficient 

0.9874 0.9612 
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Figure 8-26. Residuals for model for carbon content. 

 
Figure 8-27. Residuals for the model for hydrogen content. 
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Table 8-8. Accuracies and regression parameters for the models for sulfur and hydroxyl 
group content. 

 Sulfur 
Hydroxyl 

groups 

RMSE 0.0791 wt% 0.350 wt% 

AAD 0.0511 wt% 0.262 wt% 

%AAD 5.86% 7.34% 

R2 0.941 0.989 

95% pred. interval ±0.21 wt% ±0.72 wt% 

Range 0.52 – 1.97 wt% 
0.28 – 13.65 

wt% 

Number of samples 59 57 

Std. uncertainty 0.032 wt% 0.19 wt% 
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s C 8.477 12.12 

ε 0.03850 0.01164 

γ 0.6808 0.9968 

Degree 2 1 

Zero 
coefficient 

1.250 4.326 

Mixing 
coefficient 

0.9998 0.9996 
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Figure 8-28. Residuals for the model for sulfur content. 

 
Figure 8-29. Residuals for the model for hydroxyl group content. 

 Each of these chemical composition properties could be predicted with 
RMSEs close to the standard uncertainties of the measured data. The R2 values, 
however, were relatively low for some of the properties, which was a little 
surprising because close fits were expected for the compositional parameters. 
However, because the RMSEs were close to measurement uncertainty, it seems 
likely that the experimental data itself exhibited a larger amount of scatter than 
for other properties such as specific gravity. 
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 The lone point with the highest sulfur content also had a large residual, and 
this probably because there were no other similar samples in the data set. To 
estimate the residual for a sample, it must be left out of the regression (see 
discussion of cross validation in Chapter 0). However, for this lone sample a 
model based on the other samples had a hard time describing this sample, which 
led to the larger residual. This also appears to be the explanation behind the 
other point with a large residual because it had the highest sulfur concentration 
of any of the fuel oil fractions. 

Other properties 
 Three other temperature independent properties were also predicted: the pour 
point, the thermal expansion coefficient at 20 °C and viscosity at 37.8 °C. More 
about these models can be found from Table 8-9, and also from Figure 8-30, 
Figure 8-31 and Figure 8-32. When creating the model for viscosity the data was 
first transformed by taking the natural logarithm of the viscosity, which helped 
to improve the performance of the model. Whenever deviations from 
experimental values were calculated the values were transformed back and 
relative deviations were calculated. 
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Table 8-9. Accuracies and regression parameters for the models for pour point, the 
thermal expansion coefficient at 20 °C and the viscosity at 37.8 °C. 

 Pour point 

Thermal 
expansion 

coefficient at 20 
°C 

Viscosity at 37.8 
°C 

RMSE 5.4 °C 1.06 · 10-5 °C-1 - 

%RMSE  - 64.3% 

AAD 4.6 °C 0.723 · 10-5 °C-1 - 

%AAD - 0.94% 43.2% 

R2 0.950 0.993 - 

95% pred. interval ±14 °C ±2.4 · 10-5 °C-1 
approx. -75 to 

200% 

Range -46.2 – 47.8 °C 
6.04 · 10-4 – 13.6  

· 10-4 °C-1 
1.56 – 969000 

mPa·s 

Number of samples 68 319 115 

Std. uncertainty 3 °C 1.32 · 10-6 5% 
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PLS factors 12 - - 

C - 52.09 3.818 

ε - 0.001825 0.04320 

γ - 0.2822 0.4121 

Degree - 3 2 

Zero 
coefficient 

- 3.388 0.4178 

Mixing 
coefficient 

- 0.8226 0.9963 
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Figure 8-30. Residuals for the model for predicting pour point. 

 
Figure 8-31. Residuals for the model for thermal expansion coefficient at 20 °C. 
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Figure 8-32. Residuals for the model for viscosity at 37.8 °C. 

 The model for viscosity had a large %RMSE of 64.3%. And yet, viscosity is 
a difficult property to predict, and errors of 20 – 50% are common for fuel 
viscosity correlations [1]. Also, the range of viscosities is quite large as the 
database includes samples with average boiling points above 400 °C. A model 
was also created using only samples with viscosities less than 1000 mPa·s at 
37.8 °C, but only a minor improvement in the accuracy was seen (%RMSE of 
62.7%). This suggests that the large range of viscosities did not have a 
significant impact on the accuracy, and a large portion of the errors may simply 
be inherent to the property and samples.  
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9. MODELS FOR TEMPERATURE DEPENDENT 
PROPERTIES 

General approach 
 Many important physical and thermodynamic fuel properties cannot be fully 
described by a single value. Some examples are distributions (such as the 
molecular weight distribution or boiling point distribution) and temperature 
dependent properties. When reviewing the literature no studies were found that 
attempted to predict these more complex properties, such as temperature 
dependent properties over a range of temperatures (see [3], which is included 
here as Article 1). If a predicted property was temperature dependent, then it was 
measured and predicted only at specified temperatures. This is likely because the 
focus so far has been on quality parameters of fuels, and quality parameters are 
temperature independent. Therefore, an important part of this work was to 
investigate the potential for predicting temperature dependent properties over a 
range of temperatures. Attempting to predict these temperature dependent 
properties is also a step towards a larger goal of modeling distributions and 
eventually of predicting parameters for equations of state. 
 The approach used here was to model the temperature dependence using an 
algebraic equation, and then to predict the coefficients of the algebraic equation 
from infrared spectra. Once the coefficients have been determined, then the 
property can be predicted at various temperatures using the algebraic equation. 
This approach could also be extended to predict distributions, such as the 
molecular weight distribution, and is similar to the larger goal of predicting 
parameters for equations of state. Predicting such parameters would allow 
infrared models to be a more comprehensive solution for thermodynamic 
modeling: in addition to single parameters, the behavior of fuels at various 
conditions could be estimated. 
 In this research two properties were investigated: density and viscosity. The 
results for density were published in [3] (see Article 1). 

Density 
 The density exhibits a temperature dependence that is essentially linear at 
moderate temperatures (temperatures below the boiling region of the sample) for 
many different fuels, including petroleum [74]–[76], biofuels [77], shale oil [19] 
and coal liquids [19],  [78]. Therefore, the density-temperature relationship was 
modelled using a linear relationship given here as Equation 9-1 
 

்ߩ ൌ ଶߩ െ ሺܶߛ െ 20ሻ (9-1) 
 
where ்ߩ is the density (g/cm3) at temperature T (T in °C), ߩଶ is the density at 
the reference temperature of 20 °C and γ is a constant that describes the slope of 
the density-temperature relationship. γ is also equal to the density at the 
reference temperature multiplied by the thermal expansion coefficient at 20 °C. 
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Equation 9-1 fit the experimental data well, with a RMSE of only 0.0001054 
g/cm3. 
 The density at 20 °C and γ were then predicted for the different shale oil 
samples from their infrared spectra. The results for these models are shown in 
Table 9-10, and show that good levels of performance can be obtained for both 
of these parameters, as judged by the RMSE and R2 values. 
 When using these coefficients to then predict the density at other 
temperatures the error was at the same level as that for the density at 20 °C 
(RMSE of 0.004660 g/cm3 for predictions at the same temperatures as the 
measured data). Also, there was no noticeable increase in error with temperature. 
The accuracy appeared to be mostly determined by the error in the estimate for 
the density at 20 °C, which can be explained by the fact that the slope is 
relatively small compared to the value of the density. So, the effect of any errors 
in γ is reduced. 
 
Table 9-10. Performance statistics and regression parameters for the models for 
predicting the density-temperature relationship. 

 γ (slope) Density at 20 °C 
RMSE 7.95 ∙ 10-6 g/cm3/°C 0.00463 g/cm3 
AAD 4.76 ∙ 10-6 g/cm3/°C 0.00312 g/cm3 

%AAD 0.63% 0.13% 
R2 0.973 0.997 

Number of samples 327 327 

Range 
6.65 ∙ 10-4 – 9.72 ∙ 10-

4 g/cm3/°C 
0.712 – 1.10 g/cm3 

Regression 
parameters 

C 48.03 7.247 
ε 4.168 ∙ 10-6 0.0003936 
γ 1.021 ∙ 10-5 3.347 ∙ 10-5 

Viscosity 
 Viscosity displays a more complex nonlinear temperature dependence. Two 
different equations were compared when trying to predict the viscosity at 
different temperatures: a double logarithm equation given by Seeton [79] and an 
exponential equation called the VFT (Vogel-Fulcher-Tammann) equation [80]. 
Most other proposed equations take a form similar to one of these two equations. 
The equation given by Seeton, for instance, is just an improvement of the more 
widely known Wright equation [81], which was used to create the ASTM 
viscosity chart. Seeton’s equation is given as Equation 9-3 
 

ቀ݈݊	൫ߤ  0,7  ݁ିఓܭሺߤ  1.244067ሻ൯ቁ ൌ ܣ െ ܤ ∗ ݈݊	ሺܶሻ

݈݊
 (9-3) 
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where μ is the kinematic viscosity in centistokes at temperature T (in Kelvin), K0 
is the zero order modified Bessel function of the second kind and A and B are 
constants. Note that μ + 1.244067 is the input to the Bessel function. The VFT 
equation is shown as Equation 9-4 
 

߭ ൌ ܣ ∗ ݁ቀ
ಳ

ష
ቁ (9-4) 

 
where ν is the dynamic viscosity in mPa/s at temperature T (in Kelvin) and A, B 
and C are constants. Seeton’s equation fit the experimental data to an RMSE of 
4.19% (AAD of 2.62%), and the VFT equation had an RMSE of 2.93% (AAD of 
1.11%). 
 The models for predicting the coefficients of Seeton’s equation are described 
in Table 9-11, and it can be seen that relatively good predictions are achieved 
with a %AAD of about 3% and R2 values around 0.9. However, the viscosities 
predicted using these coefficients were very inaccurate. Only 11% of the 
predicted values had absolute relative deviations of less than 30%. Overall, the 
median relative deviation was 94%. Figure 9-33 shows the distribution of errors 
graphically. The poor performance was surprising because the coefficients were 
predicted fairly accurately. 
 
Table 9-11. Performance statistics and regression parameters for the models for the 
coefficients used in Seeton’s viscosity equation. 

 A (intercept) B (slope) 
RMSE 0.957 0.185 
AAD 0.748 0.156 

%AAD 2.63% 3.31% 
R2 0.928 0.883 

Number of samples 69 69 
Range 19.2 – 35.4 3.35 – 5.85 
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C 42.42 29.61 
ε 0.1277 0.2783 
γ 0.001672 0.7273 

Degree 2 4 
Zero coef. 4.850 4.797 

Mixing coef. 0.8140 0.8774 
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Figure 9-33. Deviation of predicted viscosities from experimentally measured values. 
Viscosities were predicted using Seeton’s equation and the coefficients predicted from 
infrared spectra. 

 The coefficients for the VFT equation could not be predicted as accurately as 
those for Seeton’s equation, as seen by comparing their %AAD and R2 values 
(see Table 9-12). What was interesting though is that the predicted viscosities 
were actually more accurate than those calculated by using Seeton’s equation. 
This can be seen visually by comparing Figure 9-33 and Figure 9-34. 35% of the 
predicted values had absolute relative deviations of less than 30% (compared 
with 11% when using Seeton’s equation), and the median relative deviation was 
48%. 
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Table 9-12. Performance statistics and regression parameters for the models for the 
coefficients used in the VFT viscosity equation. 

 A B C 
RMSE 0.0383 156 13.3 
AAD 0.0255 119 9.62 

%AAD 67.5% 17.0% 5.0% 
R2 0.330 0.703 0.689 

Number of 
samples 

69 69 69 

Range 0.00476 – 0.264 262 – 1670 133 – 241 
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C 3.032 72.26 4.866 
ε 0.5548 0.4777 0.1965 
γ 0.6208 0.9440 0.03572 

Degree 2 2 1 
Zero coef. 0.3466 3.897 -0.2781 

Mixing 
coef. 

0.9987 0.8059 0.9102 

 

 
Figure 9-34. Deviation of predicted viscosities from experimentally measured values. 
Viscosities were predicted using the VFT equation and the coefficients predicted from 
infrared spectra. 
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one sample and randomly adding a deviation of up to 3% to the coefficients. 
Then the viscosity was predicted at a given temperature using both the initial 
coefficient values and the coefficients with random deviations. By repeating this 
several hundred times an estimate of the distribution of deviations was obtained. 
Seeton’s equation had a wider range of deviations, with a standard deviation of 
157% and a maximum relative deviation of 1200%. The VFT equation had a 
narrower standard deviation of only 7.2%. The maximum relative deviation was 
22%. The difference in sensitivity could also be expected simply by observing 
the forms of the equations: Seeton’s equation uses a double logarithm, and this 
amplifies deviations more than the single exponential term in the VFT equation. 
Due to the lower sensitivity to errors in the coefficients, the viscosities predicted 
using the VFT equation were more accurate, despite the fact that the predicted 
coefficients were less accurate than those for Seeton’s equation. 
 In conclusion, the results of the two viscosity equations highlight that the 
choice of equation can play a significant role in the performance of the model 
for temperature dependent properties. For temperature dependencies that are 
linear or close to it, the choice of equation is simple, but with complex nonlinear 
temperature dependencies more attention needs to be paid to the choice of 
equation. The same effect would likely be seen if using the same method to 
predict distributions, such as the molecular weight distribution or boiling point 
distribution. 
 As a side note, the accuracy of the VFT equation also needs to be put into 
context because a median deviation of 48% can still appear to be quite large. 
However, viscosity is “one of the most complex physical properties to predict” 
[1], and therefore, the accuracy of these predictions is actually relatively good. 
Note that the average accuracy of the measured viscosity data was about 5 to 
10% (Table 5-1). The prediction accuracy for density was also several times 
larger than its measurement uncertainty, and so compared to the measurement 
accuracy, 48% is not unreasonably large. Part of the error comes simply from the 
fact that viscosity is a difficult property to measure and the reference values 
themselves contain greater uncertainty. Additionally, correlations for predicting 
the liquid viscosities of petroleum fuels can often give errors of 20 – 50% or 
more [1], so a median relative deviation of 48%, especially for the wide range of 
viscosities covered by this shale oil data, corresponds to the level of performance 
seen with other fuel viscosity prediction methods.  
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10. PERFORMANCE OF THE MODELS 

Accuracies of the models 
 The performance of the models was assessed against both the actual data for 
each property and the uncertainty of the experimental method. For comparing 
how well the predictions matched the actual data Pearson’s correlation 
coefficient was used (R2), which is a convenient way to compare properties with 
different units. The R2 values for the different property models are shown in 
Figure 10-35. Models for specific gravity and the refractive index parameter had 
the highest R2, which shows they closely fit the experimental data. In general 
though, it is difficult to identify trends among the properties. Although it was 
expected that specify gravity and the refractive index parameter would have 
higher accuracies, properties such as carbon content, which should correlate well 
with infrared spectra, had low R2 values. This is because the correlation 
coefficient does not give the full picture. The correlation coefficient is also 
affected by the measurement uncertainty of the initial reference data used to 
create the model. 
 

 
Figure 10-35. Comparison of the correlation coefficients (R2) of predictive models for 
different properties. 
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 For this reason performance was also evaluated by comparing the accuracy of 
the predictions with the measurement uncertainty of the experimental method. 
Figure 10-36 presents the ratio of these two values for different properties, and 
in many ways this figure is the opposite of Figure 10-35. Here we can see that 
although the R2 values for models for carbon content and pour point were poor, 
their RMSE to measurement uncertainty ratios are low, which indicates that the 
poor fit for these properties is in large part a result of a larger uncertainty in the 
reference data. Specific gravity, however, had an RMSE that was much higher 
than the measurement uncertainty of the underlying data. 
 

 
Figure 10-36. Ratio of the RMSE to the measurement uncertainty for each of the 
property models. 

Causes underlying performance 
 Direct comparison of the models based on performance statistics, such as the R2 
value or ratio between RMSE and measurement uncertainty, did not provide enough 
information to understand the causes that led to these differences in performance. 
There are four main factors that can affect the final performance of the model: 

 Quality of experimental data (measured property values) 
 Quality of input data (infrared spectra) 
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 Correct implementation of an appropriate regression method is certainly an 
important factor. As discussed in Chapter 0, extensive work was performed to 
test different methods to ensure that the models used performed close to the 
optimal level. Furthermore, Figure 10-36 showed that most of the models had 
RMSEs close to the measurement uncertainty of the corresponding experimental 
method, and those that did not had the highest R2 values, indicating a model that 
gave a good fit. Therefore, it can be assumed that the performance of the models 
here was not limited by the regression method, but rather by one of the other 
three factors. 
 Additionally, the same infrared spectra were used for all of the models. 
Although noise and inaccuracies in the infrared spectra likely impacted model 
performance, it is reasonable to expect that the effect was similar across the 
different properties. Therefore, the experimental property data and the strength 
of the correlation between spectra and the property are the most likely factors 
leading to differences in performance. 
 Two metrics were calculated to quantify these two factors. The quality of the 
experimental property data was characterized using the ratio of the measurement 
uncertainty to the range of values for each property (expressed as a percentage). 
Using a ratio such as this allows comparison for properties that have different 
units, and standardizing against the range provides more consistent results than 
something like the mean. Using this metric, the quality of the experimental data 
for each property is compared in Figure 10-37. Note that viscosity is not 
included, and that is because the accuracy of the viscosity model was expressed 
using relative errors and this metric could not be calculated. 
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Figure 10-37. Comparison of the accuracy of the data for each of the properties. Here 
the accuracy is characterized as the relative size of the measurement uncertainty 
compared to range of property values that occurred. 

 The extent to which each property was correlated with different wavelengths 
in the spectra was evaluated using distance correlation [82], which was used 
because it can also detect nonlinear correlations between variables. Distance 
correlation was implemented using the distcorr.py script [83]. The code for this 
script was compared to the implementation in the R Energy package [84] to 
confirm that the underlying algorithm was the same. The results are presented as 
a box and whisker plot in Figure 10-38. The median distance correlation value 
was used to characterize how strongly each property was correlated with the 
infrared spectra. 
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Figure 10-38. Box and whisker plot showing the distribution of distance correlation 
coefficients that occurred between each spectral wavelength and the given property. 

 Obviously, distance correlation is also affected by the quality of the property 
data. To investigate this relationship the distance correlation values were plotted 
versus the ratio of measurement uncertainty and range, and this plot is shown as 
Figure 10-39. Interestingly, two parallel trends emerge, with composition 
parameters falling along one line and the physical and thermodynamic 
parameters falling along a lower line. So the relationship between correlation 
strength and measurement uncertainty depends on the type of property being 
considered. Put another way, for properties that both have a similar accuracy the 
one related to chemical composition will be more strongly correlated to the 
spectra than the physical or thermodynamic property. 
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Figure 10-39. Relationship between the quality of the experimental property data and 
the median distance correlation between the spectra and a property. 

 This result was somewhat surprising. Although it is logical that certain types 
of properties correlate better with infrared spectra than others, the exact split 
seen here was unexpected. As Trygstad et al. [31] conceptualized it, some 
properties (such as those describing chemical composition) are more directly 
related to the spectra because many functional groups directly cause the peaks 
that appear in the spectra. This explains why the composition parameters were 
shown to be more strongly correlated in Figure 10-39. By contrast, physical and 
thermodynamic properties could be classified as having an indirect relationship. 
That is, they are related to chemical composition and are only indirectly related 
to the peaks in the spectra. And yet, it was expected that some of these properties 
would be more closely correlated than others. For example, it was hypothesized 
that structure parameters (specific gravity and the refractive index parameter) are 
more closely related to the functional groups present, and would therefore be 
more closely correlated with the spectra than size parameters (molecular weight 
and average boiling point). Figure 10-39 does not show a difference though, and 
it appears that any differences in model performance for physical and 
thermodynamic properties can be described solely by the differences in the 
accuracy of the experimental method used for measuring the data for model 
creation. 
 Another surprise was finding that sulfur content followed the same trend as 
the other composition parameters. Sulfur is only present in the oil in small 
concentrations, and peaks directly caused by sulfur functional groups were not 
noticed in the spectra. Trygstad et al. [31] suggested that for these types of 
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composition parameters any correlation would be weak and indirect because it 
would rely only on links between other functional groups and the concentration 
of the trace compound. In this study though, no difference was observed. 
However, this may be because the sulfur data was for samples from only three of 
the distillations. It is possible that if more data points were measured that the 
connection between the sulfur content and the concentrations of other functional 
groups would be weakened. 
 With these metrics in hand, the next step is to investigate how these factors 
influence the resulting performance. Here performance was quantified by taking 
the ratio of the RMSE to the range of property values. When plotting this 
measure of performance versus the two metrics defined earlier, it turns out that 
the distance correlation value is not strongly correlated with model performance. 
When taking the effect of measurement uncertainty into account, it seems that 
the strength of the correlation between spectral and property values has 
essentially no impact on the performance of the resulting model. Instead, the 
quality of the property data used in building the model is the strongest predictor 
of the performance of the model. This can be seen from Figure 10-40, which 
plots model performance versus the ratio of measurement uncertainty to the 
range. Both composition parameters and physical and thermodynamic properties 
lie on the same line, indicating that the stronger correlation between composition 
parameters and the spectra did not impact the eventual performance of the 
models. The model for sulfur content fell furthest from the general trend, but this 
may be because the measurement uncertainty for this property was taken from 
the ASTM standard instead of being determined experimentally with standard 
compounds. 
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Figure 10-40. Effect of the quality of the experimental property data on the performance 
of the resulting multivariate model. 

 This brings up an interesting question, though. Why is it that model 
performance was not better for those composition parameters that are more 
strongly correlated with the infrared spectra? One explanation could be that the 
maximum distance correlation values are high for all of the samples except 
viscosity (see Figure 10-38). This indicates that although some properties are 
better correlated over the entire spectrum (as indicated by the medians), almost 
all of the properties still have at least some wavelengths that are strongly 
correlated with the property of interest. It is possible that these few wavelengths 
with a strong correlation can give all the information needed to obtain a fit for a 
physical or thermodynamic property that is as good as the fit for a compositional 
parameter. 
 Another important result gleaned from Figure 10-40 is that there is a lower 
limit to model performance. As the measurement uncertainty approaches zero, 
the RMSE does not. For this particular set of experiments it approaches 1% of 
the data range. This explains why the RMSE for specific gravity is so much 
larger than its measurement uncertainty (see Figure 10-36). This behavior also 
suggests there is a second factor that influenced the performance of these models 
and caused this lower limit to appear. Most likely it is the uncertainty in the 
input data: the infrared spectra. 
 As stated in Chapter 5, the infrared spectra were estimated to have a median 
relative standard uncertainty of 1.8% (see also Figure 5-5), and this uncertainty 
in the spectral values can effectively put a limit on the resolution that can be 
obtained by a model. For example, the relative standard uncertainty of the 
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specific gravity measurements is 0.015% of the mean specific gravity value. 
This means that two samples with specific gravities that differ by only 0.1% can 
be distinguished using a density meter, but using the spectrometer any 
differences would likely be drowned out by the noise in the spectra. 

Comparison with bulk property correlations 
 Bulk property correlations are commonly used for predicting fuel properties. 
They are often used for shale oil because more detailed data is usually not 
available. Therefore, comparing the accuracies of infrared models to those of 
bulk property correlations provides a way of assessing the performance of the 
infrared models. 
 Many bulk property correlations for petroleum can be found in the literature 
[1]. Figure 10-41 compares the stated accuracies for the best of these 
correlations to the accuracies obtained with the models given here. The 
correlations compared were taken from Riazi [1]. To emphasize, these literature 
correlations were not actually applied to the shale oil samples from this study. 
What is being compared is only the accuracy of the correlation as stated in the 
literature reference. Applying these literature correlations to shale oil directly 
usually gives large errors and would not provide a meaningful comparison. Also, 
the accuracy of the correlations for average boiling point, specific gravity, 
molecular weight and the refractive index parameter was assessed using 
representative pure compounds, not actual petroleum samples. 
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Figure 10-41. Comparison of the accuracy of the infrared models and bulk property 
correlations for petroleum given in the literature [1], [85]. 

 Therefore, based on the comparison in Figure 10-41, the infrared models 
generally have an accuracy similar to or better than bulk property correlations 
found in the literature. However, this may partially be due to the fact that some 
of the literature correlations were created using either a wider range of fractions 
or only pure compounds. 
 To get a better direct comparison the infrared models were compared to bulk 
property correlations developed using the same shale oil database. The ratios of 
the RMSEs of the infrared and bulk property prediction methods are presented in 
Figure 10-42. The infrared models give similar or better results for all of the 
properties compared except viscosity, and in general, the infrared models are 
more accurate. The property with the lowest ratio is specific gravity. And yet, 
even the models for average boiling point and molecular weight had better 
accuracies than the corresponding bulk property correlations. This was 
surprising because infrared spectra do not directly measure molecular size, while 
the bulk property correlations actually do incorporate this information (by using 
either the average boiling point or average molecular weight to estimate the 
other). 
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Figure 10-42. Comparison of the accuracies of the infrared models and bulk property 
correlations. 

 The accuracies of bulk property correlations improved if smaller property 
ranges were fit. For example, when fitting only the fractions with boiling points 
below 350 °C, then the bulk property correlation for molecular weight gave 
results that were better than the infrared correlation. When using the same range 
for average boiling point, then there is also an improvement in the accuracy, 
although the accuracy is still lower than that of the infrared model. So, part of 
the advantage of the infrared model may come because it can more closely fit 
the shape of the data than the simpler bulk property equation. 
 Bulk property correlations were also created for some temperature dependent 
properties. The density, for instance, was predicted by using the measured 
density at 20 °C in conjunction with the average boiling point or molecular 
weight, if available, to predict the slope of the density-temperature relationship 
(γ). This was then used with the same linear equation (Equation 9-1) to predict 
the density at other temperatures. Data and details about these bulk property 
correlations will be the subject of an article from our laboratory that will be 
published in the near future. 
 When using this method, the RMSE versus the measured density data was 
about 0.001 g/cm3, which was several times smaller than that obtained using the 
model based on infrared spectra (0.00466 g/cm3). However, upon further 
examination, it was noticed that most of the error for the infrared predictions 
came as a result of errors in predicting the density at 20 °C. Obviously, the 
measured density value used with the bulk property correlation is more exact 
than the predicted value used with the infrared method. The predicted slope, 
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however, was more accurate when using the infrared method. When using the 
measured density at 20 °C with the slope predicted from infrared spectra then 
the accuracy of the predictions were better than using either the bulk property 
correlation or infrared models on their own. 
 In a similar manner, the coefficients for the VFT viscosity equation (Equation 
9-4) can also be predicted from bulk properties. More specifically, correlations 
based on the density at 20 °C and the average boiling point were created, using 
the simple equation form given by Riazi and Daubert [86]. Again, specifics 
about the creation of these bulk property correlations will be given in a future 
article from our laboratory. 
 Using these bulk property correlations and the VFT equation, the viscosity 
could be predicted with a median relative deviation of 35% (compared to 48% 
with the constants predicted using infrared models). It appears that, at least in 
this case, the bulk property correlations allowed more accurate predictions. 

Comparison by fraction 
 The performance of the models can also be checked by viewing the results 
for sequential fractions from a single distillation. A typical distillation was 
selected for this comparison, and both predicted and measured values were 
plotted. Figure 10-43 shows the results for specific gravity and Figure 10-44 
shows the results for average boiling point. Error bars were also placed on the 
measured values to show the expanded uncertainty, but for specific gravity the 
expanded uncertainty was so small that the error bars are hidden by the marker. 
 

 
Figure 10-43. Comparison of the performance of the specific gravity model for fractions 
from a typical distillation. 
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Figure 10-44. Comparison of the performance of the average boiling point model for 
fractions from a typical distillation.  

 For almost all the fractions in these figures the difference between model and 
measured values is smaller than the difference between subsequent fractions. 
That is, the infrared models can generally distinguish between two fractions. For 
higher boiling fractions the density is essentially constant, and it would be 
difficult to distinguish between fractions even when using measured density 
values. Note that fractions 6 and 7 are lower than the general trend given by the 
rest of the data. At that point in the distillation the pressure was reduced from 
atmospheric pressure to low pressure, and doing so required a pause in the 
distillation. This caused fractions 6 and 7 to have different compositions that did 
not follow the overall trend, leading to the drop in specific gravity and boiling 
point. The density model could account for this difference, but the average 
boiling point model had larger errors for these two samples.  
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11. ADDITIONAL ISSUES FOR WIDER APPLICATION 

Transfer of a model for use on other instruments 
 Because infrared spectrometers generally give different responses for the 
same sample, instrument specific variations usually need to be taken into 
account before using the multivariate model on a new spectrometer. This is a 
large limitation because it means a model can only be used on the spectrometer 
it was created with, or a spectrometer that happens to give a very similar 
response. Also, if the spectrometer itself changes over time (due to aging or 
intentional modifications) then the model can easily be rendered useless [26]. 
For this reason, many methods have been proposed for transferring calibrations 
between instruments [87]. 
 Unfortunately, current methods still require significant effort to reach a 
satisfactory level of accuracy. Feudale et al. [87] separated calibration transfer 
methods into three groups: methods used before model creation, standardization 
methods and preprocessing methods. Methods used before model creation, 
however, can increase the cost of the measurement system and model 
development, and unforeseen or uncontrollable variations are still likely to 
occur. With standardization methods many reference samples are usually needed 
to create an accurate transfer model, and because the same samples must often 
be measured on both instruments, the reference samples and/or spectrometers 
must be carefully maintained and transported. Preprocessing methods offer the 
advantage that no reference standards are needed, but they rely on having 
enough of an understanding of the sources of variation that these extraneous 
effects can be removed while still retaining the important chemical information. 
 For comparing different methods, it is helpful to think about the effort they 
require compared to the creation of an entirely new model. This idea is 
illustrated in Figure 11-45, which shows the relative amount of effort different 
methods require. Generally, the best method would be that which requires the 
least effort while still achieving the required accuracy. More details about the 
different types of methods, including common methods and references, can be 
found in Table 11-13. 
 Figure 11-45 has several illustrative curves to show how the accuracy of the 
transfer might increase as progressively more difficult methods are used. The 
shape of the curve mainly depends on how complex the differences between 
spectra are and the complexity of the prediction model. If the spectra are simply 
offset or are related by a set ratio, then a simple preprocessing method may give 
an accuracy that is almost as good as creating a whole new model. If differences 
are harder to model or a complex model is required to predict the parameter, 
then the easier methods may not yield much of an increase in accuracy. 
Additionally, the curve shape can be made more favorable by exerting more 
effort during the measurement or model creation steps, for example by using 
only spectrometers that give very similar responses or by removing temperature 
effects by controlling the temperature of the measurement system. In this way 
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some effects are never even introduced into the spectra or are automatically 
accounted for by the model. Although as mentioned, these methods increase the 
cost of the system. 
 

 
Figure 11-45. Illustration comparing the relative costs and potential accuracies of the 
main different types of model transfer methods. The different curves show that different 
behaviors can be expected depending on the problem at hand. 
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Table 11-13. Descriptions of the different types of model transfer methods, including 
examples of common methods. 

Type of 
method 

Characteristic features Common methods 

Preprocessing 

The spectra are mathematically 
transformed with the goal of 
removing unimportant information 
and standardizing data. No 
calibration or additional data is 
required. 

Standard normal 
variate, orthogonal 
signal correction, 
multiplicative signal 
correction, finite 
impulse response 
filtering [88], first or 
second derivatives 

Standardization 
of spectrometer 

response 

The response of a spectrometer is 
modelled and is used to correct 
spectra or the model. Usually only a 
few spectra for pure compounds are 
needed. 

Virtual standards [89], 
[90] 

Standardization 
of spectra 

A separate model is created to 
transform the spectra from the new 
instrument to resemble those of the 
primary instrument. A number of 
representative samples must be 
measured on both instruments. 

Direct standardization 
[91], piecewise direct 
standardization [91] 

Standardization 
of model 

The model for a specific parameter 
is adjusted to better apply to spectra 
from the new instrument. Many 
calibration standards (samples for 
which the parameter value is known) 
must be measured on the new 
instrument. 

Slope-bias correction 
[92], creating transfer 
model using PLS [93], 
model updating 

 
 Preliminary investigations were performed to get an idea of how difficult it 
would be to transfer the multivariate models created in this study to other 
spectrometers. 19 oil samples were measured on a second spectrometer (a 
Nicolet IR100, Thermo Fischer Scientific, Madison, WI, USA), and then the 
models were applied to these spectra from the second spectrometer. 
 There was a clear difference between the response for the two spectrometers, 
and it proved to be difficult to account for. Good results were achieved when 
using more complex methods, such as piecewise direct standardization or model 
updating. With model updating, by introducing some spectra from the second 
spectrometer into the calibration data set, the accuracy of predictions for the 
second spectrometer reached the same level as those from the primary 
spectrometer. This test was performed with the model for density at 20 °C. 
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Piecewise direct standardization gave good results for the model for hydroxyl 
group content, although it also introduced artifacts into the transformed spectra. 
Other researchers have studied this drawback of piecewise direct standardization 
and have suggested ways to deal with it, so it is likely that these artifacts could 
be reduced or eliminated. It was also noticed that it was easier to transfer the 
model for hydroxyl group content than most other models. The hydroxyl group 
model was less complicated than most other models (for instance, fewer PLS 
components were needed to achieve a good accuracy for hydroxyl group content 
than for other properties), which seems to account for this difference. Thus, it is 
likely that for most physical and thermodynamic properties the models will have 
a higher complexity and will be more sensitive to variations in the spectra. This 
could make model transfer more difficult. 
 Because creating and measuring calibration samples on both spectrometers is 
burdensome, it would be preferred to have a method for transferring spectra that 
does not require samples to be measured on both spectrometers or the creation of 
calibration standards. A variety of methods were tried, including using the signal 
normal variate of the spectra, multiplying the spectra by a constant ratio 
(multiplicative signal correction) and using a wavelet transformation. The virtual 
standards method introduced by Cooper et al. [89] was also tried. These methods 
all gave improvements in accuracy over no correction, but the accuracy was still 
at least two or three times lower than that for spectra from the primary 
spectrometer. Attempts to better model the variation between the spectrometers 
did not give significant improvements over the other methods. A more thorough 
study would need to be done to better investigate model transfer, which would 
likely require more samples to be measured on multiple different instruments. 

Better basis for extrapolation to fuels from other sources 
 Another problem is that current chemometric methods are not able to 
accurately predict values for types of fuel not included in the calibration set [8]. 
This problem arises due to the fact that different fuels can have very large 
differences in composition, some of which are present in the original sources of 
the fuels and some of which are caused by processing. The spectra or 
chromatograms often used as input for multivariate models are also quite 
complex, and therefore, the trends or structures identified in the calibration 
samples will likely not hold for fuels with compositions outside of the 
calibration range. 
 As of yet, there does not appear to be a good general solution to this problem. 
For some properties it may be possible to find a handful of key variables that 
still enable accurate predictions, and thus, the input data can be simplified, 
which would make it more likely that it could provide good results over a wider 
range of fuels. A more expensive solution would be to update the model every 
time a new fuel type is introduced by measuring the desired properties for 
samples of the new fuel and incorporating the data into the calibration data set. 
Neither of these solutions, however, solve the underlying problem. 
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 A promising method would be to use some form of data abstraction: that is, 
to take the input data and calculate abstract, or meta, variables to be used in the 
prediction model. The abstraction step would essentially seek to find a basis that 
is common to a wide range of fuels, and thus, would enable the model to 
describe a wide range of fuels. Cramer et al. [8] attempted to do this by 
identifying hundreds of different groups of similar compounds in the fuels with 
the hope that different fuels would at least have some of the compounds in 
common, allowing more accurate predictions. They showed that extrapolation 
accuracy was improved when using this method, although overall the accuracy 
was still poorer for those samples outside the compositional range of the 
calibration set. Additionally, detailed GC-GC-MS data is required to obtain this 
level of information. 
 With infrared spectra the problem is that the location of peaks for the same 
functional group or bond can shift location and that peaks for different bonds can 
overlap. A logical data abstraction scheme for solving this problem would be to 
reduce spectra to the concentrations of different bonds in the sample. This might 
be accomplished, for instance, by taking one of the existing large databases of 
spectra for pure compounds and creating a model that can identify which peaks 
or regions are caused by a specific bond type. A neural network might be able to 
perform this type of analysis. Although fuels contain thousands of different 
compounds, they contain only a relatively small number of different bond types 
or functional groups, and this would be a basis that would apply to a wide range 
of fuels. This type of data abstraction would be analogous to group contribution 
methods already used in property prediction. 
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12. CONCLUSIONS 
 
 Thermodynamic and transport properties can usually be predicted from 
infrared spectra to comparable or better accuracy than correlations based on 
bulk, or average, properties. Additionally, almost all of the models had 
accuracies that were on the same order of magnitude as the uncertainty of the 
experimental measurements, and generally were within 1.5 to 3 times the 
measurement uncertainty. Therefore, the predictions based on infrared spectra 
could be used in many calculations and as the basis for many technical 
decisions. However, because the models are created using experimental data 
they generally cannot be more accurate than the measurement method itself, and 
so when the best accuracy is required experimental measurements would still be 
necessary. 
 The accuracy of a model varied depending on the property predicted. It was 
found though that the single most important factor in determining the accuracy 
of the model was the accuracy of the experimental property data which was used 
in regression. Significantly, how well a property was correlated with infrared 
spectra did not have a noticeable impact on the accuracy. Therefore, one 
important conclusion from this is that a wide variety of different properties could 
be predicted from infrared spectra. Additionally, this indicates that improving 
the quality of the regression data is one of the best ways to improve the 
performance of a model. The results also indicate that the accuracy of the input 
data (infrared spectra) can also set a lower limit on the accuracy that a model can 
obtain. 
 Through experiments on temperature dependent properties, it was found that 
properties can also be predicted at a range of different conditions from infrared 
spectra. This is an important step for property prediction because many 
important properties depend on temperature and pressure. The eventual goal 
would be to predict constants for equations of state using infrared spectra, and 
the work done here with temperature dependent properties indicates that this can 
be done. Distributions are also important for characterizing fuel samples (e.g. 
boiling point distributions and molecular weight distributions), and the method 
used here may also prove useful in predicting these distributions from infrared 
spectra. 
 It is important to remember that although the results of this research are 
promising, that some challenges need to be addressed to make it more 
economical to use these infrared predictive models more widely, including in 
industry. More specifically, a method needs to be identified to transfer models 
between instruments without the need for standard spectra, and methods need to 
be developed that will allow models to be extrapolated and give good results for 
samples with compositions different from the calibration samples. Both of these 
are topics that could be the subject of future investigations. 
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ABSTRACT 
 
 Because experimentally measuring fuel properties is usually time consuming 
and costly, property values are often estimated using correlations. And yet, even 
when predicting these values input data must still be measured. This makes 
methods based on infrared spectra an attractive alternative because infrared 
spectra can be measured quickly and continuously, even within an existing 
process. 
 Although fuel properties have long been predicted from infrared spectra, the 
focus has been almost entirely on quality parameters of the fuel. Instead, this 
research focused specifically on determining the properties that are needed for 
modeling a fuel’s behavior in industrial processes and in the environment. In this 
work the predictive models based on infrared spectra were created using 
machine learning techniques. Support vector regression was the main method 
used. Models were created for predicting 11 different properties: specific 
gravity, the refractive index parameter, average boiling point, average molecular 
weight, carbon content, hydrogen content, sulfur content, hydroxyl group 
content, pour point, the thermal expansion coefficient and viscosity. 
Experimental data for creating the models were measured as part of a larger 
project. 
 The performance of the infrared models was compared to that of 
conventional bulk (or average) property correlations commonly used. 
Predictions based on infrared spectra had a comparable or better accuracy for all 
the properties compared, except viscosity. This shows that predictive methods 
based on infrared spectra can perform well enough to be used as a substitute for 
conventional predictive methods. Further analysis also indicated that the main 
factor limiting the accuracy of the models was the accuracy of the experimental 
data used in regression. 
 Because many important fuel properties vary with temperature or pressure, 
and predicting properties at different temperatures was also investigated. To 
model temperature dependence, the coefficients of an algebraic equation were 
found using infrared spectra. The results showed that the models obtained can be 
used to predict temperature dependent properties over a wide range of 
temperatures, which allowed density and viscosity to be predicted with 
accuracies comparable to the models for predictions at a single temperature. 
 An eventual goal would be to predict parameters for equations of state from 
infrared spectra. As the results presented here indicate, this is possible. However, 
limitations discussed in this work need to be taken into account. 
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KOKKUVÕTE 
 
     Kuna kütuste omaduste katseline määramine on tihtipeale aeganõudev ja 
kulukas, siis saadakse omaduste väärtused tihti hinnanguliselt 
korrelatsioonidega. Samas, ka hinnanguliste väärtuste saamine nõuab 
lähteandmete mõõtmist. Seetõttu oleks alternatiivina kasulikud 
infrapunaspektrite põhised metoodikad, kuna infrapunaspektreid saab mõõta 
kiiresti ja pidevalt, ja seda isegi olemasolevas protsessis. 
     Kütuste omadusi on hinnatud infrapunaspektritel põhinevate mudelite abil 
juba kaua aega, kuid seni on keskendatud peaaegu täielikult kütuste 
kvaliteediparameetritele. Käesolev töö keskendub aga nende omaduste 
määramisele, mis on vajalikud kütuste käitumise modelleerimiseks 
tööstusprotsessides ja keskkonnas. Töös olevate infrapunaspektritel põhinevate 
mudelite loomiseks kasutati masinõppe meetodeid. Peamiseks kasutatud 
metoodiks oli tugivektorregressioon. Mudelid loodi 11 erineva omaduse 
määramiseks: suhteline tihedus, murdmisnäitaja parameeter, keskmine 
keemispunkt, keskmine molaarmass, süsinikusisaldus, vesinikusisaldus, 
väävlisisaldus, hüdroksüülrühmade sisaldus, hangumispunkt, 
paisumiskoefitsient ja viskoossus. Andmed mudelite saamiseks mõõdeti 
katseliselt suurema projekti raames. 
     Infrapunaspektritel põhinevate mudelite efektiivsust võrreldi üldiselt 
kasutatavate, keskmistel omadustel põhinevate korrelatsioonidega. Ilmnes, et 
infrapunaspektrite kaudu arvutatud erinevate omaduste väärtused olid sama 
täpsed või täpsemad kõikide omaduste puhul, v.a viskoossus. Seega, 
infrapunaspektri põhised mudelid võivad olla piisavalt head, et asendada 
korrelatsioonvõrrandeid. Sügavamale analüüsile tuginedes võib väita, et 
peamine, mis piirab mudelite täpsust, on mudelite koostamiseks kasutatud 
katseandmete täpsus. 
     Kuna paljud tähtsad kütuste omadused sõltuvad temperatuurist ja rõhust, siis 
uuriti käesolevas töös ka infrapunaspektritel põhinevate mudelite kasutamist 
omaduste temperatuursõltuvuse määramiseks. Temperatuursõltuvuse mudeli 
saamiseks leiti infrapunaspektri abil algebralisse võrrandisse koefitsiendid. 
Tulemused näitasid, et saadud mudelid on kasutatavad laias 
temperatuuripiirkonnas ka temperatuurist sõltuvate omaduste hindamiseks, 
võimaldades hinnata tihedust ja viskoosust sama täpsusega, kui mudelid, mille 
abil hinnati vastava omaduse väärtust kindlal temperatuuril. 
     Edasine eesmärk oleks rakendada infrapunaspektril põhinevaid mudeleid 
olekuvõrrandi parameetrite määramiseks. Nagu käesolevas töös saadud 
tulemused näitavad, on seda võimalik teha. Seejuures tuleb aga arvestada töös 
kirjeldatud piirangutega. 
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ARTICLE 1 
 
Predicting fuel properties using chemometrics: a review and an extension to 
temperature dependent physical properties by using infrared spectroscopy to 
predict density 
 
Published in Chemometrics and Intelligent Laboratory Systems, vol. 158, pp. 
41–47, 201.
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a c t

e use of chemometricmethods to predict fuel quality properties has receivedwide attention over the
ecades, as seen from the review included with this article, no studies were found about predicting
e dependent properties of fuels. Since our research is focused on determining thermodynamic
ather than quality properties, taking temperature dependencies into account became evenmore im-
determine if accurate predictions could be obtained over a range of temperatures, the densities of
el samples (mostly narrow boiling range oil fractions, considered here as pseudocomponents) were
nd predicted. An alternative fuel (a phenol-rich oil shale oil) was studied because the property pre-
hods developed for conventional petroleum samples often give poor results for this and other alter-
The temperature dependence of density for these fuel sampleswasmodelled using a linear equation
e density at 20 °C and the slope of the density-temperature relationship. Support vector regression
predict these parameters for each sample from its infrared spectrum. Then these parameters were
dict the densities at other temperatures. Densities spanned the range from 0.713 to 1.088 g/cm3,
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Introduction

Chemometric methods have been used for predicting fuel quality
operties since at least 1986 [1], and there have been hundreds of
ticles on the subject. Chemometrics generally refers to the use of
atistical or mathematical methods to extract information about a
emical system from measurements made on that system [2]. Usually
rge sets of measured data are used (for example, all the data points in
spectrum), which necessitate advanced, computer-based statistical or
athematical methods. The driving force behind the interest chemo-
etric methods is that standard laboratory methods for assessing fuel
ality are time consuming, and rapid methods for evaluating fuel
operties allow fuel quality to be determined much more quickly and
a lower cost. Also, the samemethods can be used for onlinemeasure-
ents in refineries and blending operations to improve process optimi-
tion. Several patents have also been granted for these types of
ethods [3–7] and they have also been implemented in some
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uction operations, which attest to the usefulness of
techniques.
ore quantitatively summarize the previous research
emometrics for fuel property prediction, we have
alysis type review (containing graphs and tables) of
the subject, which is presented in Section 2. To get

erview,we reviewed 341 scientific articles and 5 patent
ich were published between 1986 and 2015. For each
ed the properties predicted, the input data used, the

ined, the regression method used and the error of the
ls created. A spreadsheet containing all this information
the review is included as a supplement to this article.
are certainly more articles available on the subject,
ough sample size to give a good representation of the
e research done in this field.
indicates a growing interest in the topic, with the

les published on the topic showing an increasing
nge of fuels and properties have been examined, and
tudies have used infrared spectra as input data, many
techniques have also been investigated. Models with a
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ood degree of accuracy have been created for many different proper-
es (see Table 1). Overall though, developments in this field have
een quite modest. The major finding, that a wide range of physical
nd quality properties can be reliably predicted from conventional
hemical data (especially infrared spectra), was already established by
e earliest articles, and had actually been shown earlier in studies on
heat [8] and tape [9]. Later articles contributed mostly by extending
e same techniques to other types of fuels or to other properties, and
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ere has been a fair amount of overlap between articles, with multiple
rticles investigating the same properties for similar types of fuels and
sing similar methods.
Nevertheless, a few noteworthy articles do stand out. Balabin et al.

0] investigated the performance of different regression methods
hen they are used to predict the properties of samples outside the
nge used for model calibration. Also, a group from the U.S. Naval
esearch Laboratory has produced a couple thorough articles about

property mode
connected to th
articles reviewe
methods by pre

So far resear
chemometric m
other propertie
ties of liquid f

able 1
he fuel properties most commonly predicted in the articles reviewed and statistics about the accuracy of themodel
e total number of articles found during the review that predicted that property. All error values are root mean sq

Property Number of articles Models included in accuracy statistics Min 1

Acid number 15 8 0.003 0
Aniline point 3 – – –
Api gravity 11 5 0.24 0
Aromatics 58 35 0.05 0
Ash content 22 16 0.01 0
Ash fusion temperature 5 3 70 –
Asphaltenes 15 13 0.13 0
Boiling point 8 4 1.29 2
Carbon content 16 10 0.8 1
Carbon residue 10 6 0.16 0
Cetane index 22 15 0.2 0
Cetane number 24 16 0.27 0
Chemical compositiona 44 – – –
Cloud point 8 4 2.92 2
Cold filter plugging point 3 2 0.77 –
Conductivity 3 2 0.84 –
Contaminant content 17 25 0.01 0
Density 79 50 0.0004 0
Distillation temperatures 68 124 0.08 1
Fixed carbon 10 8 0.78 0
Flash point 38 28 0.69 1
Fluid system icing inhibitor 4 3 0.007 –
Freezing point 24 14 1.26 1
Grindability 4 2 3.84 –
Heat of combustion 38 21 0.013 0
Hydrogen content 26 14 0.016 0
Hydrogen/carbon ratio 4 2 0.048 –
Iodine number 7 4 0.51 0
Isoparaffins 4 4 0.17 0
Lubricity 7 – – –
Mixture compositionb 38 45 0.01 0
Moisture content 17 13 0.09 0
Naphthenes 11 10 0.2 0
Nitrogen content 17 11 0.002 0
Octane number 40 25 0.07 0
Olefins 18 12 0.07 0
Other properties 51 – – –
Oxygen content 6 3 0.003 –
Paraffins 10 9 0.12 0
Pour point 14 9 2.06 2
Refractive index 5 4 0.0003 0
Resins 9 5 0.26 0
Saturates 24 16 0.56 0
Specific gravity 5 3 0.0004 –
Sulfur content 45 30 0.00012 0
Thermal stability 4 2 46 –
Vapor pressure 11 6 1.04 1
Water content 15 8 0.003 0
Viscosity 52 31 0.026 0
Vitrinite reflectance 4 2 0.1 –
Volatile matter 15 10 0.5 1
Yield 9 – – –

a Chemical composition was used to categorize articles where the concentration of a specific chemical or family
b Mixture composition refers to articles where the proportions of different types of fuel in a blend were predicte
properties [11,12]. In one of their more recent articles
ted to create a model that was more robust to changes
ion by basing the model on the content of representa-
, as identified by gas chromatography-mass spectrosco-
ies have also contributed to addressing obstacles
ith online industrial models, such as model stability
3–16] and the effect of spectrometer positioning [17].
l. [18,19] introduced a new model for transferring fuel

158 (2016) 41–47
ls between spectrometers. And as this subfield is
e larger field of chemometrics as a whole, some of the
d were directed more towards improving chemometric
senting a new algorithm or technique.
ch has mainly been focused on quality parameters, but
ethods could also be of wide interest for estimating
s, including the thermodynamic and transport proper-
uels. In this role, it could be an alternative to the

s created for these properties. The “number of articles” column shows
uared (RMSE) errors.

st Quartile Median 3rd Quartile Max Unit

.016 0.137 0.208 0.32 mg KOH/g
– – –

.25 0.265 0.731 0.811 Degrees API

.57 0.71 1.47 2.7 vol% or wt%

.56 0.91 1.94 3.8 wt%
77 – 90 °C

.42 0.69 2.08 2.6 wt%

.45 3.23 4.66 5 °C

.19 1.9 2.41 4.1 wt%

.24 0.94 2 2 wt%

.43 0.6 1.44 2

.49 1.01 1.95 2.11
– – –

.98 3.05 3.1075 3.11 °C
0.89 – 1 °C
– – 77 pS/m

.4 1.1 1.88 4.1 vol% or wt%

.001 0.0018 0.003 0.028 g/cm3

.72 3 5.3 23 °C

.88 1.72 3.58 4.6 wt%

.96 3.37 5 10.44 °C
0.009 – 0.01 vol%

.57 2.18 2.99 7 °C
4.16 – 4.47

.134 0.3 0.585 1.9 MJ/kg

.073 0.12 0.245 0.92 wt%
0.069 – 0.089

.65 0.8 1.28 1.4 g I2/100 g

.51 0.64 1 1.12 wt%
– – –

.2 0.52 1.32 10.2 vol% or wt%

.41 0.69 0.99 2.5 wt%

.25 0.38 0.52 1.9 vol% or wt%

.048 0.1 0.35 0.55 wt%

.2 0.31 0.51 1.6

.21 0.3 2.44 4.3 vol% or wt%
– – –
0.728 – 2.16 wt%

.24 0.4 0.67 1.3 vol% or wt%

.4 4.65 9.1 9.2 °C

.0004 0.0008 0.0012 0.0012 nD

.75 0.75 1.13 1.46 wt%

.63 0.9 1.69 1.7 vol% or wt%
0.0005 – 0.0008

.01483 0.034 0.25 1.6 wt%
46.7 – 47.3 degF

.77 3.27 4.6 5.99 kPa

.005 0.229 0.57 0.78 vol% or wt%

.098 0.152 0.242 22 cSt
0.13 – 0.15
1.4 3.7 7 wt%
– – –

of chemicals was predicted.
d.
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This indicates that the quality of the reference data can af-
's accuracy. For the remaining models, there is also a rough

l typ
etho
Tropsch fuels. The others category includes charcoal and rocket fuel.

ibution of the prediction models for fuel liquid density compared in this
g to their root mean squared error.
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mmonly used undefined mixture approach, where simple correlative
odels based on easilymeasurable bulk properties are used to estimate
ysical, thermodynamic and transport properties [20]. Although some
ermodynamic properties are also quality properties, and therefore,
ve been predicted, no articles were found that focused on predicting
ermodynamic properties. Additionally little, if any, research has
en done on predicting temperature dependent properties over a
nge of temperatures.
In this study, we sought to extend the use of chemometric prediction

ethods to temperature dependent thermodynamic properties. More
ecifically, we attempted to predict the density of fuel samples from
eir infrared spectra. Fourier transform infrared (FTIR) spectroscopy,
the most commonly used analytical method for these types of fuel
operty predictions (see Fig. 3). It is a convenientmethod forwhich de-
ces arewidely available, and infrared spectra correlatewellwithmany
operties.
We used oil shale oil as the fuel for this study, which is produced

omoil shale by pyrolysis [21]. Additionally, most of themeasurements
eremade on fractionswith narrowboiling ranges,whichwere obtain-
from the initial wide fractions by distillation. These narrow fractions
ften called pseudocomponents) are often used in thermodynamic
udies of liquid fuels to be able to better understand the range of com-
unds present in the oil, and therefore, enable better predictions [20].
is fractionation process gave samples that characterize much of the
riation in composition and properties that occur in the shale oil
udied.
Density is a fundamental temperature dependent property that can be

easured very accurately andhas been predictedwith good accuracy as a
mperature independent property (i.e. density at one specified temper-
ure, usually at 20 or 15.6 °C) using chemometric methods (see Fig. 2).
ditionally, formost liquid fuels the temperature dependence of density
linear at moderate temperatures, which is easy tomodel. For these rea-
ns density was chosen as the property investigated in this study. Addi-
nally, infrared spectra correlate quite well with density, likely because
nsity is closely related to the chemical structure of a sample.
Although PLS was shown to be the most popular regression method

ee Fig. 4), we decided to use support vector regression (SVR). SVR has
e advantage of being able to take into account nonlinearities through
e use of kernel functions, and Balabin et al. [10,22] reported that SVR
ves more accurate models. We created initial models with PLS and
und that for our data SVR also gave superior results.

Analysis of literature about predicting fuel properties

1. Fuel types investigated

Fig. 1 indicates that a wide range of fuels have been investigated so
r, including various conventional petroleum oils and refinery
oducts, biodiesels and biodiesel-diesel blends, biomass samples,
al, Fischer Tropsch fuels, ethanol, oil shale, natural gas, coal liquids
d even rocket fuel. The number of articles on each fuel type is
own in Fig. 1, and as seen, the majority of studies have focused on
nventional petroleum samples. This is likely because diesel, gasoline
d jet fuel are readily available and commercially important. Liquid
ofuels (which essentially consists of biodiesel and ethanol) have also
ceived a lot of attention, which probably mirrors the increasing
terest in them in the research community at large.

2. Properties predicted

Essentially all of the research so far has been directed towards
edicting fuel quality parameters, which is likely due to the immediate
plicability of these models in industry. Table 1 gives an overview of
e parameters measured, and shows that a wide range of properties
ve been predicted. In fact, Table 1 only includes the properties
hich were predicted in more than 2 sources. In total we identified
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es studied in the articles about predicting fuel properties using
ds. The unconventional fuels category includes coal liquids, oil shale
perties that had beenmeasured, and there are certainly
been measured in articles not reviewed for this paper.
cted, more attention has been given to the properties
st frequently and to those which are important for pe-
.

he model

l observations about the accuracy of these predictive
so be made. Although a thorough investigation of
nce requires detailed information about the samples,
ethods and regression techniques used, a quick glance
ls reported gives us some initial insights. Accuracy sta-
properties are given in Table 1, and those statistics
using only the models for which error data was found
s the total number of articles which predicted each
we will look more closely at the distribution for liquid
les were selected which gave the RMSE of the model
icles gave results for 2 separate models, which gave a
ty models. The number of models falling within given
hown in Fig. 2.
one density model stood out as having large errors
and it was noticed that this model was created for
l fractions [23] for which it is more difficult to measure
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orrelation between the type of fuel and the accuracy of the model. The
ensity models with the lowest errors tend to be for fuels like diesel, bio-
iesel and gasoline, which are generally easier to measure and cover a
arrower range of densities and compositions. Those with the highest er-
rs are for samples like crude oils, residual oils or a broad range of fuels
fuels from many sources worldwide, including from nonpetroleum
ources). Without more detailed information, it is difficult to identify ex-
ctly what other factors led to the different accuracies seen here. The skill
f the analyst, the type of data processing used and the specifics of how a
gressionmethodwas implemented could all potentially affect the accu-
cy of the resultingmodel. However, it is evident that twomodels for the
ame property can have quite different accuracies.

.4. Analytical method used for input data

When looking at the input data upon which the models are based,
e see that most studies have chosen to use some form of infrared
pectra, as shown in Fig. 3. This is probably due to the advantages of in-
ared spectroscopy, which include a quickmeasurement time, no need
r sample preparation, applicability to a wide range of samples, good
sults for predictingmost properties, easy extension to continuous on-
ne measurements and a cost that is lower than many other methods.
lthough infrared spectra are the most popular, many other types of
ata have been used. Only the most frequently used methods are
hown in Fig. 3, and grouped into the other category is a whole list of
ethods, including using devices such as a thermal wave interferome-
r and an electronic nose.

.5. Regression technique used

Fig. 4 shows that partial least squares (PLS) regression has been the
ost popular regression technique. The PLS was used more frequently
an all the other methods combined. PLS has been the main method
sed in chemometrics since the early days of thefield,which is probably
hy somany studies used it. As chemometric methods have developed,
searchers have gradually switched to using newer methods. Initially,
rincipal component regression and multiple linear regression
ordinary least squares regression) were used fairly frequently. More
cently, techniques that can model nonlinearity are gaining favor, in-
luding nonlinear versions of PLS (poly-PLS, spline PLS, kernel PLS), ar-
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ficial neural networks and support vector regression. It is also worth
oting that even within each category a variety of algorithms andmod-
cations have been used.
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ifferent types of fuels (solid, liquid or gas).
l

was used for this study, which is a synthetic crude oil
lysis of the solid organic matter in oil shale. Kukersite
ia) was the source oil shale for all of the samples used
ue to the molecular structure of Kukersite, its oil has
of phenolic compounds [24,25]. Almost all of the sam-
ined from Estonian Energy's Narva Oil Plant (Narva,
lant uses a commercial-scale solid heat carrier retort
ss) [26]. Two additional samples were created by
le in a laboratory-scale Fischer retort [27] (which is a
nly used in oil shale studies to evaluate the oil produc-
an oil shale).
ced at the Narva Oil Plant is separated into three wide
ns: gasoline, fuel oil and heavy oil. The densities of these
eremeasured, and then these oils were further separat-
oiling range fractions by distillation. Most of the distil-
mple distillations performed at either atmospheric
gler distillation [28]) or in a vacuum. Two distillations
med using a rectification column. The narrow fractions
aken at distillation intervals of 5–10 °C. One samplewas
correspond to crude Galoter oil by mixing the three
ne, fuel oil and heavy oil) according to their respective
he crude oil (20:60:20, as given in the plant's design
is was done because it was not possible to obtain a
directly from the process.
vestigate the role of the polar phenolic compounds on
f the oil, phenols were extracted from several samples.
as carried out using a 10% NaOH solution, and resulted
sample and a neutral oil (dephenolated) sample [25].
ions were separated in this manner, as were several
s. The phenolic and dephenolated fuel oil fractions
rated into narrow fractions by distillation. Also, these
phenolated fuel oils were mixed with original fuel oil
s with varying contents of phenolic compounds. All of
, very complicated, but the important points are that a
shale oil fractions were used and that the fractions had
of hydroxyl group content (from essentially 0 to
n total, 327 samples were used for the current study.
e wide industrial fractions or crude shale oil samples,
ng were narrow boiling fractions.

on methods used in articles about predicting fuel properties using
ds.
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el for density had good accuracy, with an RMSE of
cm3. This accuracy, however, is still much lower than the

d for

on

formance of the support vector regression model for density at 20 °C.
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2. Measurements

Densities as a function of temperature were measured using an
nton Paar DMA 5000 (Anton Paar GmbH, Graz, Austria). Densities
ere measured between 15.6 and 90 °C. Heavier fractions were
easured at higher temperatures and then their densities at 20 °C
ere calculated by extrapolation, as is commonly done for samples
at are highly viscous at 20 °C. Densities spanned the range from
713 to1.088 g/cm3. Themanufacture states the accuracy of thedevices
being±0.000005 g/cm3, but for oil sampleswe expect the accuracy is
little bit poorer (about ±0.00002 g/cm3) due to small errors
sociated with sampling. Additionally, heavier fractions are opaque
d viscous, so for them the likelihood that an air bubble is in the mea-
rement cell increases. Before each day of measurements, the accuracy
the device was checked with water and air, and between each
easurement the device was checked with air.
Infrared spectra weremeasured using an Interspec 301-X spectrom-

er fittedwith anATR accessory (InterspectrumOÜ, Tõravere, Estonia).
e ATR accessory had a single reflection, ZnSe internal reflection
ement. Interspec for Windows software (version 3.40 Pro,
terspectrum OÜ, Tõravere, Estonia) was used to collect the spectra.
ectra were obtained between 600 and 4000 cm−1 at a resolution of
cm−1. Each spectrum was an average of 5 to 10 scans (except for
e heavy oil fractions, which were scanned only once). The baseline
each spectrum was then corrected using a cubic spline interpolation
sed on 4 points: 3999, 3796, 2200 and 1800 cm−1. For a few spectra
e correction was poor due to noise, but good baselines were obtained
r these spectra by slightly shifting the points that were taken in order
avoid the noise. The baseline correction was performed using
sential FTIR software (version 3.10.016, Operant LLC, VA, USA).

3. Data analysis and model development

First, the data was examined for errors and outliers. A few samples
ere found to have measurement errors and were remeasured.
dditionally, a group of phenolic samples was identified as outliers
e to their higher than normal densities and their different
mposition. After creating an initial model, a couple more outliers
ere identified. These proved to be caused by measurement errors
cause upon remeasuring the residuals for these samples were
gnificantly lower. There were three samples with higher residuals
at could not be remeasured because those samples were no longer
ailable, and thus, the data for these samples was left unchanged. In
tal, data from 327 samples was used to develop the models.
Oils generally display a linear density-temperature relationship at

oderate temperatures (temperatures below the boiling region of the
mple). Therefore, for this study the change in density with tempera-
re was modelled with a simple linear equation shown as Eq. (1)

¼ ρ�−γ T−T�ð Þ ð1Þ

here ρT is the density at temperature T, ρ⁎ is the density at reference
mperature T⁎ and γ is a constant that describes the slope of the
nsity-temperature relationship. The reference temperature used in
is study was 20 °C. This linear equation can be used for any liquid
el that exhibits a linear temperature dependence for density over
e temperature range of interest. This seems to apply, at moderate
mperatures, for most liquid fuel types, including petroleum [29–31],
ofuels [32], oil shale oil [33] and coal liquids [34]. Generally, the rela-
onship becomes nonlinear as the sample gets close to its boiling re-
on, so the linear model would likely work over a longer range for
avier fuels and a shorter range for light fuel products like gasoline.
erefore, this technique could also be applied to other fuels besides
ale oil, if the experimental databased used to create the model
cludes samples from these other fuel types.
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ach sample was fit using Eq. (1), and the γ coefficients
tained as a result. This linear equation fit the data quite
ean squared error (RMSE) of Eq. (1) for the data in this
.0001054 g/cm3.
were created to predict the density at 20 °C and the
upport vector regression (SVR). The parameters used
n in Table 2. The data was mean centered and scaled
standard deviation of the data. SVR was implemented
on 2.7) using the Scikit-learn package (version 0.15)
ters were optimized based on the 5-fold cross valida-
fore, the accuracy of the models was estimated using
cross validation loop with 50 folds. For the density

support vector regression.

Density model Slope (γ) model

48.02915706 7.246754595
4.1683544258 · 10−6 0.000393627
1.02093930394 · 10−5 3.34174597874 · 10−5

Radial basis function Radial basis function

45158 (2016) 41–47
ized simultaneously using a genetic algorithm. The ge-
was also performed in Python, and the DEAP package
n 1.0.2) [36]. The same variables used for the density
used for the slope model, and the regression parame-
zed using the SciPy brute force algorithm [37].

iscussion
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revious studies (shown in Fig. 2). The third quartile of the RMSEs
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amples had already been disposed of and could not be remeasured.
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Table 3
The root mean squa

Temperature
°C

15.6
20
35
40
50
60
65
80
predicted density and slope values in Eq. (1), density
dicted at temperatures for which experimental data
red. The RMSE between the predicted and actual densi-
04660 g/cm3, which is an error of b1%. Therewas also a
001839 g/cm3 in the predictions.
g at the RMSE by temperature (shown in Table 3), it can
error tends to be similar regardless of the temperature.
RMSE from one temperature to another seemsmore re-
ples included than the temperature, and this variation
he samples were not all measured at the same temper-
looked at the results for some individual fractions, and
e deviation from the experimental values are essential-
rdless of the temperature. This can be explained by the
nge in densitywith temperature is relatively small com-
ue of density itself. For instance, over the temperature
o 80 °C, the change in density was less than 10% for all
measured here. Thus, the relatively small influence of
er the measured range decreases the impact of the
lope model, and therefore, most of the prediction error
model for density at 20 °C.
he accuracy of the multi-temperature model compares
el for only one specific temperature, we created two ad-
perature models for 50 and 80 °C. As seen in Table 3,
ature models and the multi-temperature model had
curacies. The added source of error for the multi-
delling method described here is the error associated
n used to characterize the temperature dependent be-
derlying equation has an accuracy better than that of a
ure chemometricsmodel, then it is likely that themulti-
del will perform as accurately as a model for only one
ditionally, the correlation between the input data and
efficients is also important. Here we used density and
is closely related to the thermal expansion coefficient),
se values are related to the chemical composition of a
l based on chemical information (FTIR spectra) was
good results.
nsity can be predicted quite well with the method used
able to expect that the same method may give poorer
r properties. Predictive models cannot be expected to
ccurately than the reference data on which they are
entioned, when using equation constants as the refer-
ccuracy of that equation also affects the accuracy of
ta. It is expected that for properties withmore complex
pendences (such as viscosity and vapor pressure) the
lower.

he results given here, it can be concluded that
an also be used to predict some temperature dependent
a range of temperatures. The method used here, i.e.
tric methods to estimate the coefficients of an equation

158 (2016) 41–47
e temperature dependence of a property, gave results

red error of predicted values for density at a given temperature.

Multi-temperature model
g/cm3

One-temperature models
g/cm3

0.003966
0.004628 0.004628
0.004716
0.004345
0.005211 0.00603
0.004286
0.005036
0.00485 0.005577
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tems
at were just as accurate as models developed for the property at one
ecific temperature. The experiment presented here involved
edicting the density of fuel samples over a range of temperatures
om infrared spectra. The resulting RMSE of the predictions was
004660 g/cm3, which is an error of less than 1%. These results are, of
urse, specific to this experiment, but it is likely that some other
mperature dependent properties could also be predicted using this
ethod.
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Abstract. This study presents a literature review of the physical and thermo-
dynamic properties of kukersite oil shale oil (or “synthetic crude oil”) as 
found in public literature. The work showed that although there is nearly a 
century-old history of shale oil production in Estonia, there are very few data 
about the thermodynamic properties and only a limited number of property 
prediction methods related to shale oil produced from kukersite. Publicly 
available information on the physical and thermodynamic properties of 
kukersite shale oil originates mainly from the period of 1930 to 1960. The 
data found are predominantly for the lighter part of the synthetic crude oil, 
i.e. the part for which the condensation temperatures of the atmospheric 
distillation curve (average atmospheric boiling points of the fractions) are 
lower than 300–350 °C. Data and studies can be found about several main 
physical and thermodynamic properties, such as specific gravity, atmo-
spheric boiling point, molecular weight, enthalpy of vaporization at the 
boiling point, heat capacity, thermal conductivity, viscosity, surface tension 
and vapor pressure. But in general, this information is not a systematic set of 
data intended for determination of thermodynamic properties, but rather it 
lays out trends and supports the simplest approaches for calculating thermo-
dynamic properties based on “undefined” pseudocomponents (a mixture of 
compounds that behave similarly). 
 
Keywords: kukersite, retort oil, thermodynamic properties, physical 
properties. 

1. Introduction 

Estimates of the depletion of global oil reserves have led to research into the 
potential for using various alternative resources. One alternative is crude oil 
produced from oil shale (i.e. a synthetic crude oil or synthetic petroleum), 
and it is estimated that oil shale resources are equivalent to 2.8–3.3 trillion 
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barrels of oil [1]. Thus, oil shale resources contain approximately three times 
more oil than conventional petroleum reserves (conventional oil reserves 
contain about 1.2 trillion barrels) [2]. The technologies for obtaining oil from 
oil shale are based on the thermal decomposition of kerogen (the cross-
linked macromolecular organic matter in oil shale) [3]. Low temperature 
pyrolysis up to about 500 °C (also referred to as retorting, semicoking or low 
temperature carbonization) has historically been the preferred thermo-
chemical conversion process for oil shales with high oil yield per organic 
matter. During the low temperature pyrolysis or retorting process the organic 
matter is converted to oil, gas and solid residue. Over the course of the 
development of shale oil production technologies several hundred different 
types of retorts (technologies) have been invented, including in situ (below 
ground) and ex situ (above ground) retorting technologies. However, 
throughout the long history of oil shale utilization above ground, i.e. ex situ, 
retorting technologies have been the only production methods used 
commercially for producing oil from oil shale [3]. 

The whole crude shale oil produced via oil shale retorting is a complex 
mixture of hydrocarbons and organic compounds containing heteroatoms, 
just like petroleum or coal liquids. Crude shale oil from commercial ex situ 
retorts, or so-called “synthetic crude oil”, can be classified by API gravity as 
an average heavy crude oil. Crude shale oils from different oil shales have 
wide boiling distributions (generally less than 30% can be distilled below 
300 oC at atmospheric pressure) and wide molecular weight distributions 
(extending up to 800–1000 g/mol) [4–7]. Usually about 50% of the oil can 
be used directly as fuel oil. Generally, crude shale oil from ex situ retorts has 
characteristics in the following ranges: hydrogen/carbon ratio 1.2–1.6, 
average molecular weight 190–310 daltons, specific gravity 0.8–1.04 
(mostly < 1), 30–70% boils higher than 350 oC, groups of chemical com-
pounds such as nonaromatic hydrocarbons up to 60%, aromatic hydro-
carbons 10–50% and heteroatomic compounds 20–60% [3, 4]. Thus, based 
on its characteristics, crude shale oil is situated somewhere between crude 
petroleum and coal liquids. Shale oil is more aromatic than petroleum, but 
not as aromatic as coal liquids [8]. At the same time, shale oil usually 
contains more olefins than coal liquids and petroleum, and can also contain 
more heteroatomic organic compounds [4]. Additionally, because shale oil’s 
composition is specific to a given oil shale deposit, shale oils also contain 
different amounts of heteroatoms, depending on the composition of 
heteroatoms in the organic matter of the parent oil shale. For example, 
kukersite shale oil (Baltic basin) contains more than 5% oxygen, El Lajjun 
shale oil (Jordan) contains up to 10% sulfur, Green River shale oil (USA) 
contains 2% nitrogen [4]. Therefore, due to the composition of shale oils, the 
accuracy of using petroleum-based empirical methods for determining the 
physical and thermodynamic properties of a given shale oil is questionable, 
at least without a corresponding evaluation of the method’s applicability. 
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Shale oil has been produced in Estonia for almost a century and many 
different processes (technologies) have been used [9]. The technologies used 
in industry have been retort generators (Kiviter process) (since 1925), tunnel 
ovens (1926–ca 1980), Davidson rotating retorts (1931–1961), chamber 
ovens (1948–1987) and solid heat carrier retorts (Galoter process) (since 
1963). From the different retorts and different process regimes kukersite 
shale oil with somewhat different parameters is obtained, in terms of both 
physical and chemical properties. Compared to the group composition of 
petroleum, kukersite contains more olefins and aromatic hydrocarbons, 
especially in lighter fractions (fractions with lower boiling points) [10–12]. 
The main component of petroleum is various paraffins, whereas shale oil 
generally contains few paraffins. One unique attribute of kukersite shale  
oil is the high content of phenolic compounds (over 30%) [13]. These 
differences in composition suggest that before using petroleum-based pre-
diction methods it would be necessary to access the accuracy of these 
methods for kukersite shale oil. Thus, the present article is a literature review 
of publicly available information about the physical and thermodynamic 
properties of shale oil produced from kukersite. 

2. Analysis and discussion 

2.1. General overview of kukersite shale oil studies 

The literature review indicated that the most systematic experimental data on 
the thermodynamic properties of kukersite shale oil and the physical 
properties necessary for predicting those properties was measured by Koger-
man and Kõll at the beginning of the last century [14]. This assessment is 
made with the objective of predicting thermodynamic properties in mind, 
since for prediction a thermodynamic or physical property of interest should 
be related to at least two conveniently measurable properties (of which one 
describes preferably molecular size and another energy, or structure). The 
experimental data was presented in 1930 in the book “Physical properties of 
Estonian shale oils” [14]. Data was given for narrow boiling fractions that 
were taken at 25 °C intervals from the whole crude oil. The crude shale oil 
was produced with one specific retorting technology – a Kiviter-type experi-
mental retort (Kohtla-Järve experimental generator). The data presented 
cover fractions with average boiling points in the range of 150–300 °C. This 
book provides average property data of the fractions, but not correlations and 
relationships. The data given in the book contains specific gravity and 
viscosity at different temperatures (20, 30, 40, 50, 60, 70 oC), molecular 
weight and specific heat and surface tension at 20 oC. And additionally, the 
fractions’ average atmospheric boiling points, thermal expansion coefficients 
and heats of vaporization at the boiling point were found by calculation. No 
chemical characteristics, such as elemental composition, amounts of different 
functional groups or compound classes (paraffins, olefins, aromatics, etc.), 
were provided for these fractions. It is worth noting that Kogerman’s and 
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Kõll’s work was published before the beginning of the systematic cha-
racterization of the thermodynamic and physical properties of petroleum-
based hydrocarbons. The beginning of that process could be considered the 
year 1933, when Watson and Nelson developed two empirical figures that 
contained the dependence of molecular weight on boiling temperature and 
the characterization parameter Kw or API gravity [15]. The data obtained by 
Kogerman and Kõll are partially or entirely given in later compilations, for 
example, in the appendix of Kogerman’s own 1931 monograph “On the 
chemistry of the Estonian oil shale kukersite” (the appendix is titled 
“Physical properties of Estonian oil shale”) [16]; Luts’s 1934 book “Der est-
ländische Brennschiefer-Kukersit, seine Chemie, Tehnologie und Analyse” 
(in German) [17] and Kollerov’s compilation “Fiziko-khimicheskie svoistva 
zhidkikh slantsevykh i kamenougolnykh produktov” (1951, in Russian) [18]. 

In the book “Der estländische Brennschiefer-Kukersit, seine Chemie, 
Tehnologie und Analyse” published by Luts in 1934, one chapter is 
dedicated to the physical and thermodynamic properties of distillation 
products from Estonian shale oil [17]. In addition to some data taken from 
the book by Kogerman and Kõll [14], formulas are given for calculating the 
heat of combustion and hydrogen content from specific gravity. What could 
be considered the most important contribution is the correlation for 
molecular weight based on average boiling point for phenol-free wide 
technical fractions obtained in the boiling range of about 30–300 °C: light 
gasoline (34–185 oC), automobile gasoline (46–173 oC), heavy gasoline 
(132–193 oC), motor fuel (186–247 oC), diesel (243–297 oC). This is similar 
to the distribution of industrial distillation fractions for petroleum oils: 
naphtha (boiling range 60–100 oC), gasoline (boiling range 40–205 oC), 
kerosene (boiling range 175–325 oC), diesel fuel (boiling range 250–350 oC). 

The majority of publically available kukersite shale oil data (also referred 
to more generally as Baltic basin shale oil data) is summarized in Kollerov’s 
compilation “Fiziko-khimicheskie svoistva zhidkikh slantsevykh i 
kamenougolnykh produktov” [18]. This is a broader compilation on the 
physical and thermodynamic properties of oils obtained from solid fossil 
fuels in which data obtained by Kogerman and Kõll [14] is given along with 
data about kukersite shale oils produced in tunnel ovens, chamber ovens and 
retort generators (Kiviter process). This data is more abundant for wide 
technical fractions (gasoline, diesel and other wider oil fractions) than 
narrow fractions. Again, the fractions are characterized only by average 
properties and no information on or links to chemical characteristics are pro-
vided. Average physical and thermodynamic properties of kukersite shale oil 
fractions are presented in the book in tables and in many cases represented as 
graphical and/or equation based relationships. And yet, three-parameter 
relationships are given only as a few figures, and only for general liquid 
organic compounds. Because it is a compilation, data is not really presented 
systematically and the data is not supported with enough additional 
information to assess its quality. Data, graphs, equations and assessments are 
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presented for kukersite (or Baltic basin) shale oil properties such as specific 
gravity, molecular mass, boiling point, thermal conductivity, heat capacity, 
enthalpy of vaporization, vapor pressure and surface tension. A chapter in 
the book “Khimiya i tekhnologiya produktov pererabotki slantsev”, 
published a few years later, in 1954 (in Russian), gives additional data and 
linear empirical relationships for the temperature dependence of specific 
gravity, heat capacity and thermal conductivity of Baltic basin shale oil [19]. 
The experimental data are on four narrow boiling range fractions and one 
wider boiling range oil fraction of neutral oxygen-containing oil substances, 
and on two fractions from chamber oven oil. However, the boiling ranges of 
these fractions are not specified and the fractions are characterized only by 
average properties (molecular weight, average boiling point, specific gravity 
and kinematic viscosities at 20, 50, 75 oC). This book also contains two more 
chapters related to properties of general liquid organic compounds, one 
addressing the Bachinski relationship of viscosity and the other Kollerov’s K 
factor [20, 21]. 

The most important subsequent overview could be a chapter in the book 
“Khimiya i tekhnologiya slantsevoj smoly“ (1968, in Russian) which, based 
on Kollerov’s book, presents both equations and graphs for predicting the 
physical and thermodynamic properties of shale oil [22]. Later experimental 
data on physical and thermodynamic properties, such as boiling points, 
specific gravities and molecular weights, can be found in a limited form in 
several works; however, these in and of themselves are not studies about 
thermodynamic properties, but parts of studies about the chemical com-
position of shale oil. Worth mentioning is also a later determination of 
viscosity for wide fractions [23–25]. 

In conclusion, searching the literature showed that publically available 
data on the physical and thermodynamic properties of shale oil produced 
from kukersite oil shale is mostly from the time period between 1930 and 
1960. This was the age which was dominated by graphical relationships. 
Relatively little systematic experimental data was found for narrow boiling 
range fractions, or data for fractions with a boiling range smaller than 30 oC 
(about 50 °F). Experimental data can generally be found for the lighter 
portion of oil for which the condensation temperatures of the atmospheric 
distillation curve (the average atmospheric boiling points of the fractions) 
are lower than 300 oC. It must also be acknowledged that the respective 
studies/measurements have not historically been carried out with the 
development of prediction methods in mind. The data found can acceptably 
be used for correlations based on undefined fractions, or pseudocomponents 
described by average parameters, and this only in a relatively limited form. 

The next subsection (section 2.2) gives a short overview of some basic 
aspects related to the prediction of the thermodynamic properties of oil 
fractions in the context of existing kukersite shale oil data. The following 
two subsections provide more specific information about two basic 
compilations of data. In subsection 2.3, a more detailed description of the 
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experimental methods and the original data are presented from Kogerman’s 
and Kõll’s “Physical properties of Estonian shale oils” [14]. Subsection 2.4 
gives some observations about Kollerov’s compilation “Fiziko-khimicheskie 
svojstva zhidkikh slantsevykh i kamenougolnykh produktov” [18], and the 
main graphical relationships and equations related to kukersite shale oil are 
presented as a table. 
 
2.2. Some considerations related to predicting kukersite shale oil 
properties using available data 

As mentioned above, the physical and thermodynamic property data on 
kukersite shale oil fractions can be found primarily by means of average 
bulk properties. In connection with the fact that the actual composition of 
oils cannot generally be quantitatively described at the level of individual 
components, the use of a method for describing oil as a mixture of discrete 
pseudocomponents (a mixture of compounds that behave similarly) has been 
widely adopted [12]. The behavior of each individual pseudocomponent is 
considered as the behavior of a single compound [12]. Oil can be divided 
into pseudocomponents based on both molecular size (boiling temperature 
Tb, number of carbon atoms per molecule Nc) and the groups of compounds 
for a given molecular size (based on chemical characteristics, for instance n-
paraffins, isoparaffins, olefins, naphthenes and aromatics). Therefore, there 
are essentially two approaches for characterizing a fraction for predicting 
thermodynamic properties: 1) the undefined mixture approach, or average 
parameter method, which views narrow boiling fractions (or cuts) as 
individual pseudocomponents that are described by the fraction’s average 
parameters; 2) the defined mixture approach, which divides a narrow boiling 
fraction or cut, based on the type of compound, into pseudocomponent 
classes (for petroleum generally three classes are used: paraffins, naphthenes 
and aromatics). As mentioned earlier, and it is important to emphasize it 
again here, the publicly available kukersite shale oil data only support the 
use of undefined mixture, or average parameter, prediction methods. 

For petroleum it has been found that to predict the thermodynamic 
properties of light petroleum fractions (molecular weight < 300 g/mol, 
boiling point Tb < 350 oC) using the average parameter method (undefined 
mixture method), at least two input parameters are needed (as one-parameter 
characterization is successful in special cases, for paraffinic crude oil 
fractions) [12]. It is recommended that these parameters describe the organic 
component’s (single pseudocomponent’s) molecular size and energy (or 
structure) [12]. When these are known, then pseudocomponents can be 
treated as components whose thermodynamic properties can be calculated 
using suitable existing equations and correlations. In most cases, average 
boiling point and specific gravity are used as the two input parameters. One 
of the simplest ways for dividing oil into undefined pseudocomponents for 
which the minimum necessary information is known (two known 
characteristics) is through the constant K factor hypothesis. The K factor 
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characterizes a fuel fraction’s paraffinity and is an empirical relationship 
between specific gravity and boiling point according to the equation: 

 

3

wK .bT

s
     (1) 

 

In the most common form of the K factor, called the Universal Oil 
Products Company (UOP) or Watson characterization factor, Tb is the 
fraction’s average boiling point in °R and S is its specific gravity at 60 °F 
(15.5 °C). This K factor (also UOP factor, Watson K factor) was put into 
practice in 1933 by Watson and Nelson [15]. To use the constant K factor 
hypothesis it is necessary to know the oil’s boiling point distribution, found 
from the distillation curve (from this the oil’s mean average boiling point is 
calculated), and the oil’s overall specific gravity (the specific gravity of the 
whole crude oil). Based on this hypothesis it is possible to find every 
fraction’s (or cut’s) specific gravity from its average boiling point on the 
basis of the value of the K factor calculated from the whole crude oil’s 
average boiling point and average density (assuming that the K value is the 
same for all fractions). 

To evaluate the constant K factor hypothesis for kukersite shale oil Figure 
was created. The Figure shows the change in the Watson K factor Kw with 
boiling point. It also demonstrates that for kukersite oil (data from  
[14, 18]) the K factor is not constant, rather it decreases rapidly for fractions 
in the average boiling point range from 50 to 350 oC. At the same time, for 
 
 

 
Fig. The change in Watson’s characterization factor Kw with temperature for 
kukersite oil. Shale oils from Kashpir (Russia, Volga basin) and Green River (USA) 
oil shales are shown for comparison. 
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Kashpir (Russia, Volga basin; data from [18]) and Green River (USA; data 
from [26]) oil shales the constant K factor hypothesis is a quite acceptable 
approach. This strongly nonconstant behavior could be attributable to the 
high content of phenolic compounds and their distribution among fractions 
[13]. Therefore, the minimum information required for describing kukersite 
oil using the two-parameter undefined pseudocomponent method would be 
the oil’s distillation curve (boiling point curve) and specific gravity curve, or 
two other acceptable input property curves. 

 
2.3. Shale oil data measured by Kogerman and Kõll 

As mentioned earlier, the most systematic experimental data on the thermo-
dynamic properties of kukersite shale oil, when property determination is the 
goal, was measured by Kogerman and Kõll [14]. To adequately use or 
interpret the data one needs sufficient information on the details of the 
experiments (the information not provided sufficiently in the review given in 
Kollerov’s book). To perform their experiments (for determining physical 
and thermodynamic properties) Kogerman and Kõll used freshly distilled 
Kohtla shale oil that was produced in a vertical, heat carrier cross-flow 
Kiviter retort (Kohtla-Järve experimental generator). The shale oil studied 
was described as a dark brown liquid which had a green fluorescence and an 
unusual smell. The sample contained 1.19% water, the specific gravity at 
18 oC was 1.008, the flame point (Martens-Pensky method) was 91 oC and 
the viscosity (Engler viscometer) was 6.4 Engler at 50 oC. 

To separate the oil into narrow boiling range fractions (cuts) a 5 liter 
26 cm long copper flask, which was equipped with a still head, was used. To 
avoid decomposition at higher temperatures a pressure of 50 mmHg was 
used. The distillation rate was two drops per second. 8 oil fractions were 
collected: the first at the initial boiling point up to 150 oC (contained 1.17% 
water) and then 7 fractions at 25 oC intervals. One significant shortcoming of 
the data given is the published temperatures of the fractions, which appear to 
be presented at atmospheric pressure. Neither the fraction temperatures at 
50 mmHg nor the calculation of the temperatures at atmospheric pressure 
from those at vacuum pressures are presented or explained in Kogerman’s 
and Kõll’s book [14]. This shortcoming is significant because average 
boiling point is generally the first choice as an input parameter describing 
molecular size in property correlations. The data include initial and final 
condensation temperatures corresponding to fractionation at atmospheric 
pressure for each fraction, and from these the average boiling points were 
calculated as the arithmetic mean. After finding the average boiling point the 
following parameters were measured for every fraction: specific gravity, 
molecular weight, viscosity, specific heat and surface tension. The thermal 
coefficient of expansion and the heat of vaporization were also determined 
by calculation. Because it is necessary to know the measurement method to 
evaluate the accuracy of the data, these methods are presented in Table 1. In 
Tables 2–4 the original data from the book by Kogerman and Kõll are given. 
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Table 1. The measurement and calculation methods used by Kogerman and 
Kõll [14] 

Parameter Notes 

Specific gravity Measured using a pycnometer and Mohr’s balance. For thermo-
regulation a water thermostat was used. 

Molecular weight Average molecular weights were determined from the freezing 
point depression of a stearic acid solution with 2% oil com-
pared to a pure stearic acid solution. The cryoscopic constant 
was measured using naphthalene and benzoic acid (the average 
value was 41.8). 

Viscosity Measured using an Ostwald viscometer. Distilled water was 
used as the reference compound. 

Specific heat at 20 oC Specific heat was determined using a Dewar’s flask that was 
equipped with a heating coil, mixer and thermometer (accuracy 
0.1 oC). For every experiment 200 g of oil was used and the 
temperature was measured every 30 seconds. The heating 
period was 2 minutes. Distilled water was used as the standard 
compound. 

Surface tension at 20 oC Measured using the drop method in relation to air. Surface 
tension values were calculated using the following formula: 

σ20 = 
0

7.30
WA

S
A

  , where σ20 is the surface tension (mg/mm); 

S is the specific gravity of oil at 20 oC; Aw is the number of 
drops of pure water; A0 is the number of oil drops. 

Thermal expansion 

coefficient 

Calculated using the following formula: 

a = 
 
a b

b t t




, where a and b are the specific gravities at 

temperatures t' and t, respectively.  

Heat of vaporization at 
the boiling point 

Calculated by the Trouton equation using a constant value of  
20 cal/mol K as the entropy of vaporization. 

Table 2. Data for narrow shale oil fractions obtained from the Kiviter experi-
mental plant (measured by Kogerman and Kõll [14]) 

Fraction, oC Tb, 
oC d

20
4  

ΔH, 
cal/kg 

MW,
g/mol 

σ20, 
mg/mm 

Β, 
1/oC C

20
p , 

cal/g oC 

150–175 162.5 0.8375 126 2.824 0.0009523 
175–200 187.5 0.8459 

– 
69.4 132 2.818 0.0009393 

– 
0.548 

200–225 212.5 0.8582 68.4 142 2.876 0.0009027 0.504 
225–250 237.5 0.8770 60.4 169 2.931 0.0008677 0.507 
250–275 262.5 0.8977 60.2 178 2.899 0.0008226 0.500 
275-300 287.5 0.9257 56.4 199 2.868 0.0007716 0.502 
Kohtla retort – – – – 3.380 0.0007190 – 

 

Note: Tb – average boiling point; d
20
4  – specific gravity; ΔH – heat of vaporization at the 

boiling temperature; MW – average molecular weight; σ20 – surface tension at 20 oC; β – 

average expansion coefficient at 20 oC; C
20
  – specific heat at 20 oC. 
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Table 3. The temperature dependence of dynamic viscosity for narrow shale oil 
fractions obtained from the Kiviter experimental retort (unit is cP) (measured 
by Kogerman and Kõll [14]) 

Temperature,
oC 

Fraction 
150–175 oC 

Fraction 
175–200 oC

Fraction 
200–225 oC

Fraction 
225–250 oC

Fraction 
250–275 oC

Fraction 
275–300 oC 

20 1.1300 1.3013 1.5960 2.2630 3.7990 8.7410 
30 0.9889 1.1033 1.3310 1.8260 2.9240 1.1033 
40 0.8557 0.9461 1.1360 1.5060 2.3030 0.9461 
50 0.7545 0.8343 0.0977 1.2720 1.8530 8.3430 
60 0.5973 0.7332 0.8560 1.0970 1.5540 2.6380 
70 0.5973 0.6517 0.7554 0.9430 1.3200 2.1090 

Table 4. The temperature dependence of specific gravity (d
20
4 ) for narrow shale 

oil fractions obtained from the Kiviter experimental retort (measured by 
Kogerman and Kõll [14]) 

Temperature,
oC 

Fraction 
150–175 

oC 

Fraction 
175–200 oC

Fraction 
200–225 oC

Fraction 
225–250 oC

Fraction 
250–275 oC

Fraction 
275–300 oC 

20 0.8375 0.8459 0.8582 0.8770 0.8977 0.9257 
30 0.8298 0.8382 0.8507 0.8694 0.8905 0.9187 
40 0.822 0.8303 0.8430 0.8620 0.8330 0.9116 
50 0.8139 0.8230 0.8356 0.8548 0.8758 0.9047 
60 0.8066 0.8149 0.8280 0.8480 0.8694 0.8980 
70 0.7987 0.8074 0.8212 0.8403 0.8620 0.8910 

 
 2.4. Overview of Kollerov’s book 

As mentioned earlier, Kollerov’s book contains the most extensive informa-
tion on the thermodynamic and transport properties of kukersite shale oil. 
More generally, Kollerov’s 1951 book “Fiziko-khimicheskie svojstva zhid-
kih slantsevykh i kamenougolnykh produktov” [18] is a compilation which 
combined data about the physical and thermodynamic properties of both 
shale oils and coal oils that were in use in the scientific community in the 
Soviet Union. A note in connection with this is that in Kollerov’s book, the 
data taken from the publication by Kogerman and Kõll are incorrectly 
associated with Davidson retort crude oil, but not with Kiviter type experi-
mental retort crude oil. In Kollerov’s book, in addition to Kogerman’s and 
Kõll’s data, a substantial amount of data is given for Estonian kukersite shale 
oils produced in industrial tunnel ovens, chamber ovens and Kiviter 
processes. Most of the data are given for wide boiling range fractions 
(technical fractions). Data are also provided for dephenolated fractions (frac-
tions from which phenolic compounds have been removed) as well as the 
phenols. In addition to kukersite shale oil, there are also data given for 
Kaspir shale oil and coal pyrolysis tars. One shortcoming of the book is that 
because it is a compilation of data, then information concerning the measure-
ment details of the data is not sufficiently provided. In addition to experi-
mental data, Kollerov’s book gives both graphical and equation based options 
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(one-parameter correlations) for determining thermodynamic properties. The 
emphasis is on graphical relationships because from 1930 to 1960 prediction 
methods were mainly presented graphically. Table 5 gives the most 
important relationships from Kollerov’s book for kukersite shale oil. 

When using the data of the book, the reader should take note of the 
characterization factor, or the K factor, and the graphs based on it. For 
characterizing shale oils Kollerov used a K factor (general form of the 
equation given by Equation 1) where the boiling temperature was in degrees 
Kelvin and the specific gravity was 20

4d .  Although the K factor used by 
 

Table 5. An overview of the parameter relationships for kukersite shale oil 
given in Kollerov’s book [18] 

Relationship Notes 

Between specific gravity 

 20
4d  and average boiling 

point (Tb) 

Graph 20
4d  = f (Tb). 

Empirical equation Tb = f  20
4d . 

 
Between molecular weight 
(MW) and average boiling 
point (Tb) 

Graph MW = f(Tb). 
Empirical equations:  
1) Luts’s equation is given for calculating the molecular 

weight (for phenol-free oil) MW = T2 / 1580, where T 
is the boiling temperature (K) that corresponds to 
50 vol% distilled by Engler distillation. 

2) For calculating the molecular weight of tunnel oven 
and retort generator shale oil fractions MW = 59.5 + 
0.38*t + 0,0023*(t–0.95)1.9, where t is the boiling 
temperature (oC). 

 
Between specific gravity 

 20
4d  and molecular 

weight (MW) 
 

Graphs d 20
4  = f(MW). 

Between the temperature 
dependence of the heat 
capacity and specific gravity 

 20
4d  

The constants from equation Ct = Co + bt given as graphs 

Co = f  20
4d  and b = f  20

4d . 

Luts’s equation is also given in the form Ct = a + 0.0011 
(t–20), where t is temperature (oC). 
 

Between enthalpy of 
vaporization (ΔH) and 
average boiling point (Tb) 
 

Graphs ΔH = f(Tb). 

Between kinematic viscosity 
at specific temperatures (ν) 

and specific gravity  20
4d  

 

Graphs for viscosity at specific temperatures ν = f  20
4d . 

 

Between vapor pressure and 
temperature 

Graphs for wide shale oil fractions: graphed as ln P = 
f(1/T) lines for different vapor-liquid ratios. 
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Kollerov has the same general equation form as the Watson K factor (Kw), 
Watson’s and Kollerov’s K factors can differ by as much as 17%. This 
results from the fact that Watson’s Kw is calculated using the Rankine 
temperature unit and the specific gravity at 60 °F (15.56 oC) 

3. Conclusions 

This review of data available in public literature shows that although there 
has been almost a century-long history in Estonia of research related to the 
production of oil from kukersite oil shale, the information on the thermo-
dynamic properties of oil is quite poor. Although data can be found about 
basic physical and thermodynamic properties (such as the temperature 
dependence of specific gravity, atmospheric boiling point, molecular weight 
and enthalpy of vaporization at the boiling point or temperature dependent 
properties such as heat capacity, thermal conductivity, viscosity, specific 
gravity, surface tension and vapor pressure), the information is usually not 
systematic, when the intent is determining thermodynamic properties or 
evaluating the applicability of a petroleum based prediction method. Like-
wise, there are few shale oil based correlations and empirical prediction 
methods for calculating thermodynamic properties. 

It is known that for the same oil shale the specific properties, composition 
and parameters of the oil depend on the retorting conditions used (the 
technology used): retorting temperature, duration, heating rate and size of 
the shale pieces. The current trend in Estonia is towards using the solid heat 
carrier (the heat carrier is the ash) retorting technology, or the Galoter 
process, for producing retort oil from oil shale. There is very little data about 
the physical properties of oils from solid heat carrier retorts. The main 
existing data is for oil from retort generators (Kiviter process), tunnel ovens 
and chamber ovens. 

Thus, so far the publicly available information has been spotty and poor 
for evaluating the applicability of contemporary prediction methods – 
studies/measurements were not historically performed with that goal in 
mind. For using two-parameter correlations the situation is made more 
complex by the fact that the Watson characterization factor Kw is not 
constant over a broad distillation range. Therefore, to obtain the input para-
meters needed for determining the thermodynamic properties of an oil, both 
a boiling curve (distillation data) and specific gravity distribution are needed. 
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This article describes the use of Fourier transform infrared (FT-IR)

spectroscopy to quantitatively measure the hydroxyl concentra-

tions among narrow boiling shale oil cuts. Shale oil samples were

from an industrial solid heat carrier retort. Reference values were

measured by titration and were used to create a partial least

squares regression model from FT-IR data. The model had a root

mean squared error (RMSE) of 0.44 wt% OH. This method was then

used to study the distribution of hydroxyl groups among more than

100 shale oil cuts, which showed that hydroxyl content increased

with the average boiling point of the cut up to about 350 8C and then

leveled off and decreased.

Index Headings: Phenols; Shale oil; Fourier transform infrared

spectroscopy; FT-IR spectroscopy; Partial least squares regres-

sion; PLS regression; Hydroxyl group.

INTRODUCTION

Oil shale is a solid fossil fuel that is found in great

abundance around the world. It is has a high mineral

content, and most of the organic matter in shale is

dispersed in the rock as a macromolecular structure

called kerogen. Oil shale resources are vast, but largely

unused due to technical and environmental challenges

that make extracting and refining it uneconomical.

To overcome these challenges and use oil shale

resources well, it is important to understand the physical

and chemical properties of the shale and the resulting

shale oil. Conventional crude oils have been thoroughly

researched, and detailed models have been created to

predict the thermodynamic and transport properties of

the oil.1 However, even though oil shale deposits exist

around the globe,2 significantly less thermodynamic data

is available for shale oils.

Shale oil is a synthetic crude produced by heating oil

shale, which causes the solid organic matter to undergo

pyrolytic decomposition. Oil produced from oil shale

should not be confused with tight oil (also sometimes

called shale oil), which is conventional oil that is found in

shale and sandstone formations. Oil shale oil has been

produced in Estonia for about a century. Many different

retorting methods have been used, including generators,

tunnel ovens, rotating retorts, chamber ovens, and solid

heat carrier retorts.3 The properties of the oil depend on

the type of retort used.4 This study used Estonian

kukersite shale oil that was produced using the

commercial solid heat carrier retorting process (also

known as the Galoter process).5 Currently, the trend in

Estonia is toward this type of process, in large part

because it is more environmentally friendly. The newest

plants use, or will use, this technology.

Kukersite shale oil contains significant quantities of

phenols, which affect the properties of the oil, and

therefore, how the oil is refined and used. Most

correlations for the thermodynamic and transport prop-

erties of narrow boiling point petroleum cuts up to a

molecular weight of 300 g/mol (equivalent to an

atmospheric boiling point of about 350 8C) are based

on two parameters: one that describes the molecular

energy of the mixture (e.g., specific gravity, refractive

index, etc.) and one for the molecular size (e.g., boiling

point, molecular weight, etc.).1 However, because of the

high content of polar phenols in kukersite shale oil, it

may be necessary to include a third parameter that

describes association forces to develop suitable corre-

lations for this shale oil. Therefore, it is important to be

able to conveniently measure phenolic content and

understand the distribution of phenols in shale oil. The

amount of phenols in a shale oil sample has traditionally

been measured using a titration technique that requires

several hours to complete. For this study, it was

necessary to find another method that would save time

and allow more measurements to be made.

Mid-infrared spectroscopy was used because it has

been used extensively to measure the concentrations of

a wide variety of compounds, from antioxidants in

onions6 to contaminants in soil.7 Many early quantitative

analyses performed on infrared (IR) spectra were based

on a simple, linear relationship between the IR absor-

bance and concentration (known as Beer’s law). The

advent of computers allowed complex statistical meth-

ods to be applied to IR spectral analysis. Two of the most

used methods are principal component analysis and

partial least squares (PLS) regression. Principal compo-

nent analysis reduces the input (spectral data) and

output (properties to be measured) down to a handful of

underlying factors that describe most of the variation

between samples. PLS regression, like principal com-

ponent analysis, finds a few factors describing the

variation, but also creates a good predictive model by

combining the input and output factors in a way that

allows the model to predict the property of interest for

new samples. The resulting PLS model takes the form of

a linear equation where each input variable is multiplied

by a coefficient and then summed together, along with a

constant, to obtain the predicted value of the desired

property.8
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To create a PLS model to measure a property from IR

spectra, spectra are first taken of reference compounds

for which the desired property is already known. Usually

only a portion of the IR spectrum is used as the basis for

the PLS model because including portions of the

spectrum where the compounds of interest do not absorb

or portions that do not correlate well with the desired

property leads to a less accurate model. The accuracy of

the PLS model also depends on the number of factors

used to create it. As more factors are added, the model

fits the data more closely, but if too many factors are

used, overfitting can occur. This means that factors are

included which do not really correlate with the property

to be measured. This decreases the predictive ability of

the model.9,10 For this reason, the accuracy of a model is

usually validated by testing it on a different set of

samples. The number of factors can also be determined

by using the original set of data and simply calculating

the model several times while rotating which samples

are left out of the calculation. This is called cross

validation.8,11

The use of PLS regression, and other techniques, has

enabled IR spectroscopy to become a powerful quanti-

tative tool. Infrared spectroscopy coupled with PLS

regression has also been used for measuring crude oil

compositions and recently has even been used to predict

other physical properties such as density and viscosity.12

This and similar methods could be used to quickly

provide a wealth of information about shale oil and other

liquid fuels derived from fossil fuels. This study sought to

use IR spectroscopy to determine the hydroxyl content of

kukersite shale oils, which would reduce measurement

time to a few minutes. The data collected using this

method was then used to study the distribution of

phenols among narrow boiling shale oil cuts.

MATERIALS AND METHODS

Samples. The shale oil for this experiment was

obtained from a commercial solid heat carrier (Galoter)

process in Narva, Estonia. Most of the samples were

from the fuel oil fraction of the distillation (also referred

to as ‘‘middle oil fraction’’ in some older Galoter

process-based publications), but a sample of heavy oil

from the same plant was also studied. In total, six

different oil samples from Narva were used (five fuel oil

samples and one heavy oil sample), which were

collected over a yearlong period. This shale oil was

further separated into narrower boiling range cuts by

distillation. Three of the distillations were performed

under vacuum conditions, one was done in a rectification

column, and the other eight were Engler distillations at

atmospheric pressure according to the ASTM D86

standard.13 The distillations cuts were volume based,

so each narrow cut was taken to have roughly the same

volume as the other cuts. Most of the cuts spanned

distillation temperature intervals of about 5 to 10 8C. The
cuts had average boiling points ranging from about 200

to 450 8C at atmospheric pressure. Additionally, in order

to study the phenols more closely, phenols from ten of

the vacuum distillation cuts were extracted. These ten

phenol cuts, along with the corresponding dephenolated

samples, were also measured as part of this study.

Devices. The IR spectra of the oil samples were

obtained using an Interspec 301-X spectrometer fitted

with an ATR accessory (Interspectrum OÜ, Tõravere,

Estonia). The ATR accessory had a single reflection,

ZnSe internal reflection element. Interspec for Windows

software (version 3.40 Pro, Interspectrum OÜ, Tõravere,

Estonia) was used to collect the spectra. Spectra were

obtained between 600 and 4000 cm�1, and a resolution of

4 cm�1 was used. For each cut, five to ten scans were

taken and then averaged together (except for the heavy

oil cuts, which were scanned only once). This improved

the repeatability of the spectra and reduced noise. The

baseline of each spectrum was then corrected using a

cubic spline interpolation based on 4 points: 3999, 3796,

2200, and 1800 cm�1. For a few spectra the correction

was poor due to noise, but good baselines were obtained

for these spectra by slightly shifting the points that were

taken in order to avoid the noise. The baseline correction

was performed using Essential FT-IR software (version

3.10.016, Operant LLC, Burke, VA).

Other characteristics of the oil cuts were also

measured. Densities were measured using an Anton

Paar DMA 5000M. Average boiling points were mea-

sured using a DuPont 951 thermogravimetric analyzer.

This also allowed atmospheric boiling points to be found

for the vacuum distillation cuts. Average molecular mass

was measured using a cryoscopic method in which

samples were dissolved in benzene.14

Methods. To measure the hydroxyl content for the

calibration points, a titration method was used. The

method has been used for decades to measure the

hydroxyl content of shale oils.15 It should be noted that

this method also measures primary and secondary

alcohols and that organic acids also affect the titration.

However, in shale oil the majority of hydroxyl groups are

phenols and there are not significant quantities of organic

acids,16 which is why this method has been used since

the beginning of the last century to experimentally

determine phenol content. The titration method used in

this study was published in Russian, but the procedure is

the same as the acetylation method described in Vogel’s

Elementary Practical Organic Chemistry17 with the

following modifications: about 0.5 g of the sample was

used, only 2 ml of the acetylating reagent was used, the

mixture was heated for 1.5 hours, and a pH meter was

used for the titration instead of an indicator. To

summarize the procedure, the hydroxyl groups in the

sample were acetylated using an excess of acetic

anhydride in pyridine. A parallel blank experiment was

prepared at the same time. At the end of the reaction,

water was added to the samples to convert any

remaining acetic anhydride to acetic acid. Then, the

acetic acid was titrated using potassium hydroxide, and

the difference in titration volume between the sample and

the blank was used to calculate the weight percent of

hydroxyl groups in the sample.

As mentioned in the previous section, phenols were

extracted from ten cuts. They were extracted using a

10% solution of sodium hydroxide. Sodium hydroxide

was added five times, and then the samples were

washed with distilled water three times. Any remaining

water or solvent was then removed from the oil portion of

the extraction with a rotary evaporator (at a temperature
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of about 80 8C). These dephenolated oil cuts had a

hydroxyl content of about 2 wt% OH. The sodium

hydroxide portion was acidified, and then the phenols

were extracted using diethyl ether. The solvent was then

removed from the phenols using the rotary evaporator.

RESULTS AND DISCUSSION

Constructing the Partial Least Squares Model. The
IR spectra of the shale oil contained several peaks that

could be assigned to general functional groups and

molecular structures. Figure 1 gives spectra from a few

of the shale oil cuts. The large group of peaks between

2800 and 3000 cm�1 result from aliphatic C–H stretching.

The large, rounded peak at about 3400 cm�1 is the O–H

stretch peak, and shows that hydroxyl groups are

present. The lower end of the spectrum contains a

jumble of peaks caused by the numerous compounds in

the oil cuts, but a few notable features can be picked

out. The peak at about 1600 cm�1 is from aromatic ring

stretching and thus shows the aromaticity of the

sample. Peaks for O–H bending occur between 1260

and 1410 cm�1, and peaks for C–O stretching occur

between about 1050 and 1200 cm�1, all of which give a

measure of hydroxyl content.18 Lots of information

about the molecular structure of the oil samples is

contained in this lower range of the spectrum.

Partial least squares (PLS) regression was used to

develop a model to predict hydroxyl content. The PLS

analysis was performed using a self-made Python

program that used the Scikit-learn PLS function.19 The

Scikit-learn function uses the non-linear iterative partial

least squares (NIPALS) PLS algorithm.

The region from 800 to 1640 cm�1 was used because,

after trying several other regions of the spectrum as

well as the entire spectrum, it was found that this region

gave the best results. When data points from the 3100

and 3700 cm�1 range were included, the accuracy of the

model decreased, and thus, this region was not used.

The searching combination moving window technique

proposed by Du et al.20 was also used to search for the

best spectral ranges, but the region from 800 to 1640

cm�1 still gave better results.

For the analysis, a resolution of 4 cm�1 was used.

Here, 48 cuts with known hydroxyl content, as found by

titration, were used as the calibrating substances.

Further, 11 factors were used for the regression because

this number gave the model with the lowest error. The

accuracy of the resulting model was estimated using

leave-one-out cross-validation, and the average root

mean square error (RMSE) of the model was 0.44 wt%
OH. This error is the result of noise or other distortions in

the spectra, error in the titration method used, and error

in the PLS model. The titration method itself had an

approximate error of 0.29 wt% OH (the average standard

deviation for parallel measurements was 0.145 wt% OH).

In Fig. 2, the actual hydroxyl content is plotted versus the

predicted values. The predicted values are the values

obtained from cross validation.

It should also be noted that the PLS model was

designed to give hydroxyl concentration in units of molar

volume (mol/cm3). These are the units that most directly

correspond to the way the FT-IR works since spectral

features are affected by the number of hydroxyl groups

in the measured sample space. Therefore, the reference

values were converted to moles per cubic centimeter to

create the PLS model, and then, the model results were

converted to weight percent OH.

The coefficients resulting from the PLS model allowed

hydroxyl content to be found for all the fuel oil and heavy

oil cuts distilled and for the original whole fuel oil

samples. Thus, all that is needed to find the hydroxyl

content of shale oil is its IR spectrum, if a PLS model

appropriate for a specific shale oil is available.

Distribution of Hydroxyl Groups Among Narrow
Boiling Point Cuts. The data collected using this method

are shown in Figs. 3–5. Figure 3 shows OH content in a

narrow cut versus the average boiling point of the

narrow cut. The narrow cuts were taken over distillation

temperature ranges of 5 to 10 8C. The samples were

FIG. 1. Representative IR spectra from shale oil cuts. Temperatures in the legend are average boiling points.
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collected over a year-long period from an industrial

retort run under the same operating conditions. Figures

3–5 show that hydroxyl content in the shale oil cuts

ranged from about 0 to 9 wt%. The five whole fuel oil cuts

measured had an average of 5.2 wt% OH. The general

trend is that hydroxyl content increases with boiling point

up to about 350 8C, and then for the heavier cuts, the

hydroxyl content decreases and levels off. Similar

behavior is also seen as the molar mass of the cuts

increases, as shown in Fig. 5.

Only a few sets of data for the phenolic content of

kukersite shale oil are publicly available, and these were

mostly based on wide boiling cuts that were taken over

distillation ranges of about 100 8C. These datasets are

not as detailed as the data obtained from narrow boiling

cuts in this study (which were taken at 5 to 10 8C

intervals). Also, the data shown was measured using

different methods and was based on oil from several

different retorts, and thus, the data varies widely.

However, this literature data does show some similar

trends.

Figure 6 shows these literature values and separates

them according to the type of retort used to produce the

oil. Data for the solid heat carrier retort was taken from

the literature21 as well as from measurements made at

Tallinn University of Technology in 1999. Data for the gas-

generator retorts was taken from these references.22–24

Most of the data was measured for fractions boiling below

FIG. 2. Performance of the partial least squares model. The predicted values were obtained from cross validation.

FIG. 3. OH content versus average boiling point for narrow boiling point shale oil cuts. The data is shown in units of weight percent OH on the left

axis and as the percent of the total OH groups in the initial oil on the right axis.
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370 8C, and therefore, they only show an increase in

phenol content. Two oil samples were also fractionated

using vacuum distillation. The atmospheric distillation

temperatures of these fractions were roughly estimated

using the correlation presented on page 106 in Riazi,1 and

the resulting data is shown as the black points in Fig. 6.

Data from these vacuum distillations also include cuts

with higher boiling points and show a peak in phenol

content and then a decrease, which corresponds to the

behavior observed in this study.

In the vacuum distillations, about 90% of the initial fuel

oil was distilled, and about 90% of the hydroxyl groups in

the initial fuel oil were recovered. This means 10% of the

hydroxyl groups remained in the residue, which indi-

cates that even the heaviest part of kukersite shale oil

still contains significant quantities of hydroxyl groups.

FIG. 4. OH content versus the density of shale oil cuts.

FIG. 5. OH content versus the average molecular weight of shale oil cuts.
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This is supported by observations from an earlier study

on kukersite tar.25 In the experiment, kukersite primary

pyrolysis tar, which is an intermediate in the pyrolysis of

oil shale, was fractionated by sublimation up to a

temperature of 220 8C in a vacuum of 10�5 torr. Infrared
spectra of the fractions and the residue all showed a

significant OH peak. In Engler distillations, only about

40% of the hydroxyl groups were recovered, which also

explains why measurements made only on lower boiling

fractions do not completely describe the distribution of

hydroxyl groups in shale oil. The heavy oil distillation

fractions (which is the heaviest fraction from the

commercial plant) also had significant quantities of

hydroxyl groups.

Structure of the Shale Oil Phenols. As mentioned

before, the majority of hydroxyl groups in kukersite shale

oil are phenolic, including resorcinol and naphthol

derivatives. Some general information about the struc-

ture of phenols in shale oil can be taken from the data in

this study and from past studies. Knowledge of the

structure also helps to explain the peak and subsequent

decrease in phenolic content that occurs as the boiling

point of shale oil cuts increases. Figure 7 shows that the

number of OH groups per molecule increases with

boiling point up to about 350 8C, which is approximately

the boiling point of the cuts with the highest OH content.

Beyond that point, the ratio levels off, even though the

boiling point, and therefore molar mass, of the cuts is

increasing. This means that the phenols in heavier cuts

FIG. 6. Previously measured data for phenol content of kukersite shale oil from two types of refining processes.

FIG. 7. Number of OH groups per molecule for shale oil cuts as a function of average boiling point.
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are larger, leading to a decrease in the mass percent of

hydroxyl groups, even though the mole percent of

phenols in general remains roughly constant. Similarly,

Zelenin and Vassiliev24 also noticed that the bulk of

shale oil phenols are larger phenols that appear in high-

boiling fractions. Additionally, Luts22 made the observa-

tion that the average molecular weight of phenols in the

crude shale oil is about 300, of which only one third is the

basic phenol core (which has a molecular weight of 94).

Kukersite shale oil also contains naphthol and resorcinol

derivatives. The basic naphthol and resorcinol cores

have molecular weights of 144 and 110, respectively,

which are still much smaller than the average shale oil

phenolic compound.

Infrared spectra from the extracted phenols also

support this explanation. The peak at 2925 cm�1 is

generally assigned as antisymmetric methylene C–H

stretching, and the peak at 2955 cm�1 as antisymmetric

methyl C–H stretching.18 The spectra for all the shale oil

cuts in this study show that the methylene peak is

significantly higher than the methyl peak, which indi-

cates that shale oil contains more straight, long,

aliphatic chains than branched chains and methyl

groups. However, for the phenols extracted from the

lighter cuts, the methylene peak is the same height as

the methyl peak. For phenols from successively heavier

cuts the methylene peak becomes larger, as shown in

Fig. 8. These observations indicate that the phenols

distilled first are smaller and lack the long, aliphatic

chains, and as the temperature increases, distilled

phenols contain successively longer aliphatic chains. In

this study, the phenols with long chains started to distil at

about 340 8C, and by 370 8C, the phenols had a

methylene–methyl C–H ratio similar to that of shale oil

in general. This is the same boiling point range where a

maximum in hydroxyl content occurs.

Zelenin and Vassiliev,24 in an earlier study on shale oil

phenols, separated phenolic molecules from four frac-

tions of kukersite shale oil taken between 180 and 350 8C.

Some of their results are shown in Fig. 9, which show

that naphthol and resorcinol derivatives make up a large

portion of the phenolic compounds in shale oil that boils

below 350 8C. They also found that, for the phenols, 20 to

40% of the carbon atoms were aliphatic, which means

that there are 2 to 4.4 carbon side chains on the phenols

on average.24 However, this study does not give any

information on the phenols present in higher boiling

fractions. Also, Zelenin and Vassiliev24 extracted phe-

nols using a 10% alkali solution. This type of solution

was also used for extracting phenols in this study and,

after extraction the oil phase, still contained about 2 wt%
OH. Thus, many phenols may not have been extracted or

examined by Zelenin and Vassiliev, but their research

still gives insight into the types of phenolic compounds

contained in kukersite shale oil.

CONCLUSIONS

This study shows that IR spectroscopy can be used to

measure the hydroxyl content of shale oils with a RMSE

of 0.44 wt% OH. The model used to do this was found

using partial least squares regression. Using IR spectra

greatly reduces the time needed to obtain information

about the hydroxyl content of oils. Infrared spectroscopy

could also likely be extended to measure other compo-

sitional properties for shale oil, as well as conventional

oil.

The data from this study also provides new information

about the distribution of hydroxyl groups in kukersite

shale oil. The distributions according to average boiling

point, molecular weight, and density were shown.

Normal Engler distillations generally only show the

increasing hydroxyl trend because Engler distillations

are only done up to boiling points of around 300 8C. At
higher temperatures, the oil samples start to degrade.

By performing distillations under vacuum conditions,

samples with higher boiling points were also collected,

which enabled collection of about 90% of the hydroxyl

FIG. 8. Aliphatic peaks from IR spectra of shale oil phenols. The middle peak (about 2925 cm�1) is from methylene C–H stretching, and the peak on

the left (about 2955 cm�1) is from methyl C–H stretching. The phenol spectra here are labeled according to their average boiling point.
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groups in the fuel oil fraction. These samples showed the

peak and subsequent decrease in hydroxyl content

described in this study.
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