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Introduction

Two-sided matching markets are everywhere around us, when booking a cab
through a mobile app, applying for a school place for your child to school or
even allocating landing slots to airplanes. Usually in these markets agents
on both sides have certain preferences regarding each other. For instance,
passengers have preferences about the price, quality and type of a taxi and
similarly, the driver may prefer passengers with a longer travel distance.
Families prefer certain schools over others, while due to local regulations,
primary schools usually prioritise children on the basis of proximity. These
matching markets have been extensively studied in a static centralised situ-
ation, where all participants share their information with a central clearing
house, which then handles the allocation. A seminal paper by Gale and
Shapley (1962) initiated this type of research by providing simple axioms
and an algorithm to compute the allocation.

The inner workings of markets have long been at the centre of economics
research. The (neo)classical assumptions are that sellers and buyers are
rational, somehow find each other at the decentralised marketplace and
agree upon a price. This commodity market usually has an equilibrium
price, meaning that after all agents willing to sell or buy a good at a specific
price have transacted, there are no more agents left willing to sell or buy
at that price. If the price is too high, there might be some agents who are
willing to sell. Alternatively, some might still be willing to buy at too low a
price. Although the equilibrium price may exists, the question remains how
self-interested agents would find that price. Walras (see e.g. Bowles, 2004,
p. 216) proposed a process for such a market. This process involves an
auctioneer, now known as a Walrasian auctioneer, who iteratively collects
cost and value information from agents and proposes a price. However, this
type of market tends to be considered as highly centralised as it precludes
all out-of-equilibrium trading and thus, not realistic in real-world markets.

The questions of market and mechanism design are also prominent top-
ics in theoretical economics (Klemperer, 2004b; Milgrom, 2004), also more
recently in computer science (Roughgarden et al., 2007) and even physics
(Smith et al., 2003; Farmer et al., 2012). Several Nobel prises have been
awarded on the study of economic design. To Leonid Hurwicz, Eric S.
Maskin and Roger B. Myerson “for having laid the foundations of mech-
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anism design theory” Nobelprize.org (2007). To Alvin E. Roth and Lloyd
S. Shapley “for the theory of stable allocations and the practice of market
design” (Nobelprize.org, 2012), which started by Gale and Shapley (1962).
In fact William Vickery, joint with James A. Mirrlees, received the prise
even sooner “for their fundamental contributions to the economic theory
of incentives under asymmetric information” (Nobelprize.org, 1996). Vick-
ery’s fundamental paper was on the second-price auction (Vickrey, 1961).
Search friction, which is central in uncoordinated matching markets, has
also received attention from the Nobel prise committee in the award to
Peter A. Diamond, Dale T. Mortensen and Christopher A. Pissarides “for
their analysis of markets with search frictions” (Nobelprize.org, 2010).

Computational agent-based economics studies the outcomes of economic
processes of interacting agents (e.g. Tesfatsion and Judd, 2006; Sterling and
Taveter, 2009; Leyton-Brown and Shoham, 2009). These agents might not
behave in a perfectly rational manner, or possess enough information to
do so and exhibit learning by doing. Neoclassical economics emphasises
the study of equilibria as it is often feasible to solve the allocation market
models by showing at least one good equilibrium with axiomatic analysis.
This might be a reasonable approach, if operating under the assumption
that economies tend to stay close to an equilibrium. Although there might
exist an equilibrium, where the transactions take place under conditions of
perfect knowledge and rationality, the equilibrium analysis does not specify
a decentralised process by which to find such a competitive equilibrium
(e.g. Bowles, 2004, p. 216).

A complex systems based approach to economics puts the agent-based
interaction model centre stage (e.g. Kirman, 2016). The main argument
is that the interaction model is an important factor in determining the
outcome. Furthermore, it is no longer that easy to analyse these systems
using fixed-point theorems, but as stated by Durlauf and Young (2001)

The hallmarks of this approach are, first, to explicitly model a
socioeconomic system as a collection of heterogeneous individ-
uals. Second, individuals interact directly as well as through
prices generated by markets. Peer groups, social networks, role
models, and the like have a prominent place when it comes to de-
termining individual behaviour. Third, individual preferences,
beliefs, and opportunities are themselves influenced by the in-
teractions that characterize the system. Fourth, the analysis of
such processes draws from methods in stochastic dynamical sys-
tems theory, supplemented by large-scale simulation techniques.

(p. 11)
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The double-auction market mechanism is often used in financial trad-
ing. This is similar to the Walrasian model, but more decentralised and
detailed about how information is shared and trades actually occur. In
terms of allocative efficiency, simple rules suffice to find the competitive
equilibrium price even with randomised behaviour both in an agent-based
model (Gode and Sunder, 1993b) and also in the context of human exper-
iments (Gode and Sunder, 1993a). A significant part of research revolves
around how to actually establish the required trading rules. The current
state of the financial market demonstrates that setting such rules is not
easy (e.g. Patterson, 2012; Budish et al., 2013; Lewis, 2014).

However, as regards matching markets, there is no market-clearing price,
all the goods are substitutes and agents have to figure out their utility for
each individual good. Conversely, in a commodity market, goods have a
type and the only question is how to trade one type of good for another. The
mediating institution is usually money, i.e. the goods have an associated
price for which an agent can buy or sell it. In contrast, in a matching
market all the goods are potentially different. As an example of a two-sided
matching market, multiple jobs may be available, but agents have different
preferences for them which are dependent on more than only the wage.
Another example is multiple schools in which agents have a different level
of desire to obtain a place. The main characteristic typically of a matching
market is that there is no price associated with being matched to a job or
a place in a school. People usually do not buy or sell jobs (see e.g. Bowles,
2004, p. 292 for discussion) or municipal school positions. In the latter
case, allocation is usually restricted by the law and other considerations.

Although the motivations are different for job matching and school al-
location, the models are similar. For example in the school market, there
might be 50 or 1000 schools and agents have to form their preferences. In a
job market, the positions, companies and locations are different and work-
ers have to form their preferences, but it is hard to gain access to all of
the information in order to form a preference list. Moreover, what further
complicates the situation is the fact that agents need to determine how to
act based on the (available/obtained) information. In some cases, it might
be easiest to simply start from one’s most preferred option and progress de-
creasingly. However, this method might not always be beneficial as it could
potentially waste time while another agent could seize a feasible, but less
preferred option. Furthermore, thinking strategically is not only relevant at
decentralised marketplaces, but also regarding centralised clearing-houses.
Sometimes even if school choices are centralised, it is beneficial for families
to consider different strategies for revealing their preferences (e.g. Abdulka-
diroglu and S6nmez, 2003). However, designing safe and optimal matching
markets is possible Gale and Shapley (1962). Still, there is a variety of de-

13



tails to be considered, such as application quotas (Dur et al., 2013; Aygiin
and Bo, 2013), couples (Roth and Peranson, 1999), contracts (Hatfield and
Milgrom, 2005) and more. In these market the details matter. Nonethe-
less, as these papers show, there is success in designing these markets which
has also been studied before in Estonia in the context of college admission
(Veskioja, 2005).

Nevertheless, often the matching market may not be centralised. Roth
(2008) points out three main aspects of failure for a matching market:
unravelling, thickness (congestion) and strategic behaviour. A centralised
clearing-house based on the deferred-acceptance algorithm by Gale and
Shapley (1962) would solve the problems of unravelling, congestion and
strategic behaviour to an extent. Nonetheless, there remains the problem
of attracting participants to the market. Furthermore, establishing a cen-
tralised allocation may be difficult due to potential opposition from market
participants. For instance, certain agents might benefit from a decentralised
market and hence, not be interested in coordinating. Roth (2015) observes
uncoordinated and decentralised matching markets becoming more relevant
in the sharing economy and thus the issues mentioned more acute. Acker-
mann et al. (2008) studies the computational aspects of certain interaction
models and shows that the time required to find a stable solution similar
to the result of the deferred-acceptance algorithm is at least exponential
regarding the number of agents.

However, the operation mechanisms of decentralised markets have not
been extensively studied (Roth, 2008, p. 563). Similarly to a competitive
equilibrium model, there is an analytical model for a decentralised job-
market, namely the matching function (Petrongolo and Pissarides, 2001).
This models the probability of a free agent being matched to a certain
open position, but does not specify how the interaction and discovery pro-
cess work. Rather the probability is attributed to characteristics such as
education, experience, etc. and frictions that maybe attributable to an
interaction model. Nevertheless, the matching function still neglects to
specify the agent coordination model.

Moreover, with the growth of the internet economy, several matching
markets have emerged (e.g. Evans and Schmalensee, 2016; Choudary et al.,
2016). These matchmakers are often also two-sided, matching apps to users,
taxis to passengers, etc. While in many situations the goods on one side
can be considered unlimited, e.g. one user downloading an app does not
limit others doing so as well, in other situations the goods are limited. For
instance, if a taxi is booked, no other passenger can order the same taxi.

Currently, the matchmakers are concerned with attracting participants
to their platform to solve the thickness problem. Thus, the transaction
pricing model has been the main concern for these businesses (Rysman,
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2009, p. 140). The main function of these platforms is to help market
participants to find each other. Usually, there is no coordinating mechanism
behind the platform, e.g. the Deferred-Acceptance algorithm. Rather,
agents take simple myopic short-term greedy actions to select a match.
The decentralised and dynamic nature of the markets compels us to ask if
we can do better.

In the thesis, the progression is made from a decentralised to an op-
timal centralised two-sided matching market. We start the thesis by in-
vestigating behaviours in decentralised two-sided matching markets. We
compare the matching size and allocated rank with different behaviours in
a decentralised matching market, as well as to a centralised clearing-house
based matching market. We proceed by studying the centralised two-sided
clearing-house used in the Tallinn primary school choice mechanism. As
this a manipulable mechanism, we investigate the equilibrium strategy and
compare it to an optimal and strategy-proof mechanism. Finally, we use an
optimal and strategy-proof mechanism to examine policies for constructing
priorities for kindergarten allocation. We also compare the efficiency and
fairness properties of the different policies.

Motivation

The main examples serving as our motivation are the different place allo-
cation models in use in Estonia. The two cases we study are the primary
school allocation in Tallinn and kindergarten allocation in the municipality
of Harku. In brief, the procedure in Tallinn consists of two parts: first, a
decentralised allocation of children to selective groups and schools; second,
a centralised allocation of the remaining places. In Harku, the allocation is
centralised, although it is decided by a committee of the heads of kinder-
gartens.

It is unclear how effectively families manage to behave in these allocation
settings. First, in a decentralised situation they might give up early rather
than wait for an opening in a more preferred school, or they might limit
the number of schools they apply to. This creates a kind of a lock-in, where
several families stick to their position and thus, a favourable trade might
not occur. The behaviour that would guarantee a place for a family at their
most preferred school in the second centralised stage of the Tallinn process
is also not clear. The collection procedure limits the choices of families
to three, which moreover cannot even be submitted in a preferential order.
Families have the motivation not to present their true preferences for various
reasons and the data will show that families do try to consider how best to
present their preferred schools.
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The aim of the thesis is to investigate these matching markets. Firstly,
a way of modelling the behaviour of agents in decentralised markets is pro-
posed followed by a comparison of the aggregate outcomes with an optimal
centralised mechanism. Second, a game-theoretic model of the centralised
part of the Tallinn school choice mechanism is proposed and the equilibrium
behaviour as well as the outcome of that mechanism is investigated.

The main way of improving the allocations in matching markets is to
design a deferred-acceptance based centralised market. The municipality
of Harku has operated a nearly centralised clearing-house for several years.
However, families can only submit three alternatives and sometimes these
were not enough to provide a place. Consequently, other alternatives were
suggested to the families. This has the potential to create misallocations, as
a family could have received a higher-ranked place, if it had stated initial
preferences differently. In addition, the main criteria for selecting chil-
dren is the application date. Harku is interested in making their allocation
more flexible , based on distance from kindergarten and any siblings in the
same kindergarten. As such considerations alter the ordering of children for
kindergartens and the mechanism should take this into account. In order
to have a simple and optimal allocation mechanism for families, a redesign
of the clearing-house mechanism was required. The mechanism used thus
far was widely known to be unsatisfactory for families, even more so when
there is a limit on the number of preferences to be submitted.

The claims and contributions

The central claim of this dissertation is that designing allocation rules re-
quires very detailed consideration, as minor elements in the design can have
adverse effects on the final allocation. This can be due to the behaviour of
the agents or because of rule design for a dynamic environment. In order
to support this main claim we examine three claims in the dissertation:

A In an uncoordinated and decentralised market, the behaviour of agents
is the key determinant of the matching properties — size and rank. We
aim to show that a decentralised market is significantly worse in terms
of assigned agents and assigned rank than a deferred-acceptance based
centralised matching.

B Merely centralising the allocation process is insufficient. We aim to
show that the centralised Tallinn school choice mechanism design in-
centivises agents to report insincerely. In addition these behaviour
results in a less preferred match for some agents, while benefitting
other agents compared to an optimal allocation.
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C Even with a mechanism where agents are motivated to report truth-
fully and are guaranteed an optimal match, we aim to show that
the allocation is sensitive to the implementation of the policy and to
changes in the structure of family preferences. For example a policy
of matching children to nearby kindergarten can be implemented ei-
ther by absolute or relative distance. The comparative allocated rank
is significantly different depending on the choice between the two.

To support these claims, we conduct three computational experiments
in the matching market framework. The basic assumption of agents with
preferences is the same in all models. We look at three two-sided match-
ing environments: a decentralised market, a centralised manipulable and a
centralised truthful mechanism design.

Outline of the dissertation

In chapter 1 we review the fundamentals of mechanism design and game
theory, including the relevant concepts for this thesis. Examples are pro-
vided of axiomatic design of mechanisms for auctions, fair division and
matching. Additionally, we discuss aspects of mechanism design wherein
the analytic axiomatic approach is intractable and we also motivate a com-
putational approach.

In chapter 2 we develop three simple behaviours in a uncoordinated and
decentralised matching market. The behaviours range from simple one-shot
matching choices to more sophisticated behaviour for producing a successful
matching transaction. It emerges that the myopic behaviour proves superior
to more informed behaviours in terms of matching size, but inferior to the
utility of the average agent. The main dimension explored are market
thickness, i.e. the balance between the numbers of agents on the two sides
of the market. We manage to recreate a Beveridge curve similar to the one
observed in job market literature. The second component is the structure
of the preferences of agents and its impact on the Beveridge curve. We
compare the decentralised mechanisms to a centralised clearing house based
on the deferred-acceptance mechanism. We use a median rank to measure
the efficiency of a matching. We found that the median rank can be as much
as 20 times worse in a decentralised market than in a centralised deferred-
acceptance based market, which occurs when correlation in preferences is
small and the lists are long. Moreover, in the case of longer preference lists,
the decentralised mechanism has many unassigned agents and the matching
is unstable. On the other hand, a centralised mechanism computes a stable
matching, usually with almost no unassigned agents.
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In chapter 3 we describe a mechanism used for primary school alloca-
tions in the city of Tallinn. We observe that the mechanism is complicated
and consists of multiple stages of decentralised and centralised matchings.
We define and further explore the centralised mechanism in Tallinn school
choice. By using genetic algorithms, we show how the Tallinn mechanism
incentivises families to manipulate their preference revelation by report-
ing only a few schools, and not always from the top of their preference
list. This claim appears to match the observed behaviour. In addition,
it emerges that the expected utility in the Tallinn mechanism is higher
compared to the widely used deferred-acceptance mechanism, although the
number of unassigned students is also higher.

In chapter 4 we study kindergarten allocation practices in an Estonian
municipality, Harku. We describe the allocation practice used until 2015,
followed by an overview of the 2016 system, which was redesigned on the ba-
sis of our recommendations. The new mechanism provides a child-optimal
stable matching, with priorities based on siblings, distance and other fac-
tors. We evaluate seven policy designs in order to understand efficiency and
fairness trade-offs based on the 2015 and 2016 admission data. In addition
to the real data analysis, we conduct a counter-factual policy comparison
and sensitivity analysis using computational experiments with generated
preferences. The findings show that different ways of considering the same
priorities can have a significant aggregate effect on the allocation.

In chapter 5 we conclude the thesis. We discuss the assumptions in all
of the conducted experiments. We view the types of markets as stages in
moving towards an optimal centralised market allocation. Finally, we assess
the claims and their validity in light of the obtained results.
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1 Mechanism Design Background

1.1 Game theoretic foundations

Game theory analyses situations, where agents are seeking to maximise
their utility in an interaction with other agents. We assume the agent’s
utility is known to the agent and he can assign values to different outcomes
of the game. A simple game consists of agents and their strategies. In
Table 1.1 we describe a well-known game of Prisoner’s dilemma with two
agents: Alice and Bob, with both having two possible strategies: cooperate
and defect. The intersection of each strategy describe the payoff (utility)
profile for the agents if they jointly choose to play some strategies. For
example if both would select to cooperate, they payoff for both would be 4
for both.

The game can be thought of as a model of resource economy. If two
agents would cooperate on managing the resource, by not over-consuming,
they would both receive an utility of 4. However, if just one over-consumes
then he would receive greater utility. And if you see the other agent over-
consuming you might as well over-consume, because that will increase your
utility from 0 to 2. Over-consuming will lead to unsustainable state, thus
the utilities are lower.

Table 1.1: Tragedy of the commons (Prisoner’s dilemma)

Alice
Cooperate Defect
Cooperate 4,4 6, 0
Bob Defect 0, 6 2,2

If Bob would cooperate we can easily observe that Alice would do better
by playing defect, that is her utility u, would increase from 4 to 6. Similarly
we can reason, if Bob would play defect, Alice’s payoff would also be greater
if she played defect. Since the game is symmetric, we can change the names
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of the agents and the payoffs would be the same, then the same reasoning
applies to Bob. So the result of the game would be for both to play defect.
This is the unique, dominant strategy, Nash equilibrium of the game.

Definition 1. Best response for agent i to a strategy profile s_; is a strategy
sy, such that u;i(s}, s—;) > ui(si, s—i) for all strategies s;.

We denote by s; the strategy of agent ¢ and with s_; strategies for all
other agents but ¢. In the Prisoner’s dilemma example both agents play
their best response strategies.

Definition 2. Nash equilibrium is a strategy profile s = (S1,...,8n) if for
all agents i, s; is a best response to s_;.

Depending on the game there might be multiple Nash equilibria (e.g.
Leyton-Brown and Shoham, 2009). The game in Table 1.1 is also interesting
that agent always play defect regardless of the other agent, so the defect
strategy is the dominant strategy of the game.

Definition 3. Dominant strategy s; for an agent i is a strategy that is best
response to all possible strategy profiles s_;

If we look at the game in Table 1.1, we see that both agents would be
better off by cooperating, but this is not strategically viable. Ideally we
would like the game’s Nash equilibrium solution to be Pareto optimal.

Definition 4. A strategy profile s is Pareto dominating if for any other
strategy profile s’ for all agents i, u;(s) > wu;(s") and for some agent j,
uj(s) > u;(s').

Definition 5. A Pareto optimal strategy profile s does no have any strategy
profile s’ that would Pareto dominate it.

In the game described in Table 1.1 both agents cooperating is the Pareto
optimal outcome of the game. Although there are other Pareto optimal
outcomes, only both cooperating Pareto dominates the equilibrium solu-
tion. The question for mechanism designer is how to design the game such
that when agents play their best strategy, the outcome would be good, e.g.
Pareto optimal. In later sections we will see depending on the game model,
there might be different optimality notions.

A central planner might provide incentives so the payoff structure of
the games changed, like for example in Table 1.2. This might be also
achieved using institution or social norm (Poder, 2010), exactly how this
is accomplished not important here, but the equilibrium solution should
emerge for both agents to cooperate.
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Table 1.2: Tragedy of the commons (Prisoner’s dilemma)

Alice
Cooperate Defect
Cooperate 8,8 6, 4
Bob Defect 4,6 2,2

So far we considered a game where the strategies of other agents we
known to all agents. In a more general setting the payoffs for a particular
strategy might be unknown, but there is some probability distribution over
the payoff structure of the game.

There is a set 6 € © of possible games each with a probability p(6). The
game still has a set A of actions. By s;(a;|#;) we denote the equilibrium
strategy in a particular game, which is one when action a; is played when
game is 0;. This might also be a probability, when the equilibrium strategy
is not pure, but for simplicity we have not considered here.

Definition 6. Agent’s Ex ante expected utility is defined as

Elui(s)] =) p(0) Y | []si(as165) | wila,6)

0O acA J
Definition 7. Best response in a Bayesian game is

BR;(s—;) = argmax E[u;](s}, s_;)
8&65@
Definition 8. Bayes-Nash equilibrium is a strateqy profile that Vi s; €
BRZ'(S_Z')

Assume now that with probability % we play the game in Table 1.1 and
with probability the game in Table 1.2. The expected utility of the game for
Alice and Bob would be E[us] = Eug] = 2 + 18 = 5 as the equilibrium
of the second game is both cooperating with a payoff of 8.

To find the equilibrium of the join game we have to compute the ex-
pected utilities for each combination of actions as in Table 1.3. The Nash
equilibrium of the game is (DC, DC) as expected. In the first game Alice
and Bob would both play defect and in the second game cooperate, as we
also found when we reasoned individually. This might no always be the
case, depending on the probabilities of being in one game or the other.

However real-world is more complex and interactions are usually not
one-shot games as described above, rather interactions are repeated. So
the strategies would have to specify longer term behaviour. One way to
model these is to use so called folk theorems, which specify a strategy for
next round as a response to observations from previous round(s).
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Table 1.3: Joint game

Alice
CC CD DC DD
CC|6,6 5,4 7,4 6,2
Bob CDh |4,5 3,3 5,3 4,1
DC | 4,7 3,5 55 4,3
DD |26 2,2 3,4 2,2

In Figure 1.4 we present some folk strategies in repeated interactions.
Here Always defect and Always cooperate ignore observations from previous
rounds. However Tit-for-Tat always adjusts to the observations, when the
other side defects (-, D) it also defects and when the other side cooperates
(+,C) it also continues or changes to cooperation.

Table 1.4: Strategies in a repeated game

Tit-for-Tat Always defect Always cooperate
-,0) (D) () ()
(D) () ) )

—C__ D D C
-,C)

If we put these strategies to a similar matrix game, we would obtain the
payoff structure as in Table 1.5. There are two equilibrium strategies here
s1 = (Always defect, Always defect) and sy = (Tit-for-Tat, Tit-for-Tat).
So we see that once there is some adaptivity and retaliation to defection,
cooperation is suddenly a feasible strategy as opposed to a myopic, one-
shot, behaviour.

Table 1.5: Mean payoffs in an infinite game

Alice
Always Always Titfor-Tat
cooperate defect
Always cooperate 4,4 6, 0 4,4
Bob Always defect 0,6 2,2 2,2
Tit-for-Tat 4,4 2,2 4, 4

Also the potential strategy-space in these games is very large and the
best responses depend on the strategies in the population. Here computa-
tional experiments are the main tools applied. One potential implementa-
tion is by Wilensky (2002) in NetLogo (Wilensky, 1999). Table 1.6 shows
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mean payoffs in three possible populations using Wilensky (2002) for about
200,000 iterations. In the experiment each agent remembers other agents’
previous actions and acts according to its strategy.

Table 1.6: Mean payoffs (u) in repeated Prisoner’s dilemma

Strategies ‘ U Strategies ‘ U Strategies ‘ U
Tit-for-Tat | 1.95 Tit-for-Tat | 2.31 Tit-for-Tat | 2.29
Always D | 1.00 Always D | 2.39 Always D | 2.54
Always C | 1.96 Always C | 1.85
Random | 2.25

In a population with no cooperators, Tit-for-Tat is better than always
defecting as they have higher payoffs when playing against agents with the
same strategy. However when cooperators are introduced defector can take
advantage of them and gain higher payoffs. Even random agents do better
than cooperators, in fact they do almost as good as Tit-for-Tat, although it
is also dependent on the population. In longer and more complex repeated
games it might be hard to figure out a best response as the strategy might be
very complicated. For example to find a good strategy automata has been
subject for research for quite a while (Axelrod, 1980; Nowak and Sigmund,
1993; Sigmund, 2010), and still is (Blake et al., 2015).

1.2 Auctions

In most well known auctions types there is one good for sale by one seller
and there are multiple potential buyers for the good. Each buyer has some
value v; for the item. The question is how to design a system (auction)
that have some good performance guarantees. We’ll look at two types of
performance measures: maximising social welfare and maximising expected
revenue of the seller.

We usually concentrate on looking at sealed-bid auctions. In a sealed-
bid auction buyers submit their bid to an auctioneer so that other buyers
will not see it. Then the auctioneer makes the decision to whom to allocate
the good and their payment. In most cases the good is allocated to the
highest bidder and the payment amount will depend on the chosen auction
format.

There is also another type of auctions, called open-cry auction. This
is a more traditional format, where each bidder publicly announces his bid
and the highest bidder wins. The price paid is usually the announced bid.
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We continue by analysing the sealed-bid auctions. In some sense these
auctions can be thought of as an equivalent to some open-cry auctions,
although not in all aspects, like for example information about others val-
uations.

1.2.1 The first price auction

First price auction is probably the most well-known choice for auctioning.
In the first price auction the good is allocated to the highest bidder and
the bidder pays the amount he bid. The obvious question for the bidder is:
What to bid?

Let us look at a situation where the bidders know the distribution of
valuations of other bidders, but not the actual values. Assume it has a
uniform distribution and is between [0, 1]. Let b; denote the bid of agent
7 and as before v; his true valuation. However a bidder ¢ knows his own
valuation v;. If the bidder wins, his utility from the payoff will be u; = v;—b;
and in the case of losing u; = 0. This is known as the quasi-linear utility
setting. That is agents only care about their own value and payment and it
does not depend on the total amount of money he has (Leyton-Brown and
Shoham, 2009, p. 268). Additionally, in uncertain settings, we assume the
agents want to maximise his expected utility, i.e. they are risk-neutral.

An aspect we will not look at too closely is agent’s risk attitude. In
a first price auction it matters what is the agent’s risk attitude to what
he would bid, here we assume that all the bidders are risk-neutral. See
Klemperer (2004a) for more references on risk-aversion.

If there are only two risk-neutral bidders with values drawn indepen-
dently and uniformly from [0, 1] then (3 - v, 1 - v2) is a Bayes-Nash equi-
librium strategy (Leyton-Brown and Shoham, 2009, p. 336). Bayes-Nash
equilibrium is an equilibrium under uncertainty, we need to reason about
the valuation of the other agent. Here we assume the value of the other
bidder in drawn from an uniform distribution.

So far we looked at only two bidders. What happens when there are
more? It would involve a lot of integrals. In general with n bidders the equi-
librium strategy profile is ("T_lvl, e "T_lvn) (Leyton-Brown and Shoham,
2009, p. 337). Although we can observe that the strategy even for two
bidders it is not dominant strategy to bid truthfully. Also the expected
revenue from the auction is "T_l “ Vmaz, Where vpg, = max{v, ..., v, }.

Additionally, the winner of the auction paid the highest possible price
for the item. Meaning there is nobody who would be willing to pay the
same price. The bidder might have incorrectly valued the item and is now
stuck with it, because nobody is willing to pay the same price. This is
known as “winner’s curse”. So bidders might not have incentive to bid
their true value.
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1.2.2 The second-price auction

However there is a better way to run the auction, by using a second-price
auction. In the sealed-bid second price auction the winner is still determined
by the highest bidder, but the price for the good will be the price of the
second highest bidder. Here the weakly dominant strategy is bid your true
value (Leyton-Brown and Shoham, 2009, p. 334). Intuitively, when a bidder
value is the greatest, he will gain positive utility by bidding his true value
although is does not matter how much above the second place value he will
bid. Although when he bids lower his utility will be zero.

Both of these auction mechanisms guarantee that the item is allocated
to the highest bidder. Although with the first price auction it is only in
expectation, it does no necessarily happen in every instance. By allocating
the item to the highest bidder we make sure that we maximise the total
utility in the allocation — social welfare.

Since there exists a dominant strategy, agents do not need to reason
how other agents bid. This is beneficial for bidders, but also for the seller.
As revenue from Bayes-Nash equilibrium in first price auction is highly
dependent on agents’ behaviour, the second price auction is much less so.

If bidder valuations are drawn from an uniform distribution [0, 1] and a
winning bid is vy, there are n — 1 other valuations drawn from an uniform
distribution [0, vynez]. To find the second-highest bid, we need the 1st order
statistic of the uniform distribution [0, vjes]. The kth order statistic is

":i;kvmm«, which is the expected kth largest value of the uniform distribu-
tion. So the 1st order statistic of n—1 bidders is %Umam = %vmax.

This is the same as in first-price auction. As is turns out these auctions are
expected revenue equivalent.

Theorem 1. Assume that each of n risk-neutral agents has an independent
private valuation for a single good at auction, drawn from a common cu-
mulative distribution F(v) that is strictly increasing and atomless on [v,D].
Then any efficient auction mechanism in which any agent with valuation v
has an expected utility of zero yields the same expected revenue, and hence
results in any bidder with valuation v; making the same expected payment
(Leyton-Brown and Shoham, 2009, p. 323).

1.2.3 The VCG mechanism

The second price auction can be further generalised to multiple items and
multiple bidders. The described second-price auctions is also known as
Vickery auction, due to its author Vickrey (1961). But this auction applies
only to individual items, what if we have a more general setting of multiple
items? Or even more generally what might be the goals of a social planner
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for selecting and designing a mechanism? Usually three goals are the most
prominent (e.g. Narahari et al., 2009, p. 7; Leyton-Brown and Shoham,
2009, p. 273-274; Nisan, 2007, p. 225), although there could be others:

e a mechanism should be strategy-proof, it should always be in the
participant’s best interest to state their true valuations

e a mechanism should be efficient, the items should be allocated so that
they would create the largest value in a society

e it should be feasible, in polynomial number of steps, to compute the
solution of the mechanism

All of these properties were satisfied in the second-price auction. We
saw it is easy to report ones true valuation; the items were allocated to
the highest bidder, thus maximising efficient; last, it was easy to find the
solution, it would require n steps, for n bidders.

To generalise the second-price auction, there is a class of mechanisms
known as the Groves mechanisms (Leyton-Brown and Shoham, 2009, p.
273-274). It has two components, the allocation rule:

1) = arg max U; (T
X0) = argmax 3 i)

and the payment rule of the form

0i(0) = hi(v—;) — Zﬁj(X(ﬁ))
J#i

First we see that the mechanism would always allocated to goods to
highest bidders, as this would maximise the x(v). It is important the
payments does not depend on ¢-s valuation and the two components of
©i(0) do not. If that is satisfied the payment rule guaranteed to be strategy-
proof. There is also the freedom for the mechanism designer to choose h;.
Additionally, it turns out, a mechanism is strategy-proof only if it is a
Groves mechanism. See Theorem 10.4.3 (Green-Laffont) in (Leyton-
Brown and Shoham, 2009, p. 278).

The next obvious question is how to select h;. There we have Clarke
pivot rule (Leyton-Brown and Shoham, 2009, p. 280):

hi(0-i) = 0j(x(8-3))
J#i
This calculates the value of the allocation without the agent i. The x is
still the welfare maximising allocation function. As promised this function

h; does not depend on the valuation of agent 7. The resulting mechanism
would be:
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oi(0) = 3 a5((0-0)) = 3 65(x(0) (11)

What is so special about the Clarke pivot (or payment) rule? First it
guarantees that the payment y;(0) is always positive when all valuations
are nonnegative (e.g. Roughgarden et al., 2007, p. 219). It is individually
rational, meaning it does not create negative utility to be participating in
the mechanism. For example an option would be to set h; = oo or some
other large number, but this would always create a huge payment for the
participants and they would have negative utility and would not like to
participate in the mechanism. And we would still like to make sure it is
positive, so the seller can collect some revenue for the goods sold.

Although the VCG mechanism (1.1) satisfies the three properties above,
the computational complexity being satisfied when finding an efficient al-
location is doable in polynomial time, there still are some good properties
it does not satisfy. For one the revenue for the auctioneer might be very
low, compared to the winning valuation. There are many others reviewed
in (Leyton-Brown and Shoham, 2009, p. 280-288).

1.2.4 Optimal auctions

So far we have concerned ourselves with maximising the utility of the society
— social welfare. In many situations the auctioneer is instead interested in
maximising its own revenue. This arises in many situations, for example
Ad-Auctions (e.g. Edelman et al., 2007; Nisan et al., 2009) and selling goods
on auction sites (eBay, 2016).

We compared the first- and second-price auctions and found find them
to be equivalent in terms of expected revenue. If the second bidder’s value
is low and the first bidders high, then the auctioneer would gain only low
revenue from the auction. Furthermore the revenue can be arbitrarily low
even in the VCG and other mechanisms with the same allocation rule. For
example consider a situation with three bidders on two items (Ausubel and
Milgrom, 2010). Bidder one is only interested in both of the items with a
total value of 2 million€, whereas bidders 2 and 3 are both interested in
just one item are willing to pay 2 million€ for an individual item. The
VCG would allocate the items to bidders 2 and 3. The payment in this
situation would be zero for both bidders, due to the nature of the payment
rule.
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In a situation where the seller does not care about economic efficiency,
but is just interested in maximising its revenue, revenue-maximising (or
optimal) auctions are used (Leyton-Brown and Shoham, 2009, p. 329). The
differentiating aspect is that the auctioneer would set a reserve price, below
which the item would no be sold. This ensures, for example, if in the second-
price auction the second bid is low and first high, the auctioneer would still
extract at least his reserve price. Although is might happen that the reserve
price is above the highest bid, in which case the item is not sold. This is
the risk the seller would have to take in order to maximise the expected
revenue.

Define for each bidder ¢ a virtual valuation (1.2) (Myerson, 1981; Leyton-
Brown and Shoham, 2009, p. 329).

(o) = v — 1—F@'(Ui)
Vi(vi) = v SO (1.2)

To determine the virtual valuation we would need to know the distri-
bution f;(v;), from which the value is drawn and the distribution is such
that 1; is increasing in v;. Once the virtual valuations are known for each
bidder, we use those to find the welfare maximising solution and compute
the payments according to virtual valuations. When all the virtual valu-
ations are all negative the item is not allocated. However the mechanism
still remains strategy-proof.

So the point r} where 9;(r) = 0 is when virtual value becomes positive
and the item is allocated, this can be considered as a reserve price below
which the item is not sold. When the distribution for all bidders is the

same, this is simply the point * when r* — I}Z{f;) = 0.
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Figure 1.1: Revenue with uniform valuations
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For illustration let’s look at a small scale computational experiment
with reserve prices in range r* € [0,1] and randomly drawn values for
all the bidders from 2/(0,1). The optimal reserve price r* in this case is
r* — 1717* =0 = r* =0.5. In Figure 1.1 we see the optimal reserve
price with between 2, ..., 10 bidders. We see that having slightly greater
reserve price is slightly better than having a reserve price of zero. Also
we can observe that overshooting, setting a too high reserve, can also be
detrimental to revenue, much more so than not setting a reserve price at
all.

Of course the assumption of uniform valuations might not hold and
we would require more information to select revenue-maximising reserves,
which is hard if the auction has not been run before. Although this has
been successfully used in large scale ad-auctions (Ostrovsky and Schwarz,
2011) to increase revenue.

Additionally we see from Figure 1.1 that having more bidders increases
revenue and even more than the reserve price. It has been shown that
adding one more bidder to an auction is better than an optimal reserve in
a single item auction (Klemperer and Bulow, 1996).

Theorem 2. The expected revenue from an auction with n+1 bidders and
no reserve is at least as high as the revenue from the corresponding auction
with n bidders using the optimal reserve price (Milgrom, 2004, p. 148).

1.3 Fair division

A slightly different resource allocation problem is fair division. Here there
is no seller, who is interested in revenue maximisation. Rather there is a
pool of items that need to be allocated between agents, like for example
inheritance, divorce settlement, a lot of land etc. A fair division problem
has a set of agents and an item or a set of items to be shared. The problem
comes in many flavours, it could be:

e one continuous divisible good to be divided — cake-cutting Robertson
and Webb (1998); Brams and Taylor (1996)

e several divisible goods — fair division with divisible good Brams and
Taylor (1996)

e several indivisible goods — fair division with indivisible goods Brams
and Taylor (1996)

The problem of fair division has been present for a long time (e.g. Brams
and Taylor, 1999), but is often cited to be first formalised as a mathemat-
ical problem by Steinhaus (1948). Initially the main goal was to find an
allocation that would guarantee a proportionally 1/n fair share to all agents.
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Over time other criteria have been introduced, like envy-freeness, utilitar-
ian, egalitarian solutions, Pareto optimality and Nash’s Bargaining Solution
(e.g. Chevaleyre et al., 2006; Veski, 2012). More recently with the advent of
algorithmic game theory (Roughgarden et al., 2007) the equilibria and in-
centive properties of different allocation procedures have been studied (Han
et al., 2011a; Van Essen, 2013; Branzei et al., 2016; Aziz et al., 2015), but
also computational complexity (Van Essen, 2013; Nguyen et al., 2013).

More formally we have a set of n agents A = {aj...,a,} and a set m
goods or resources R = {ry,...,7n}. The goods, as mentioned, can be of
different type: heterogeneous divisible, indivisible and a single continuous
divisible good. Each agent a; has some utility u; for resources that is a
mapping u; : R — [0, 1]. It is usually assumed that ereR ui(rj) = 1. So
the main difference with auctions is how the valuations are treated. While
in auctions agents can have various levels of valuations, but eligibility for
bidding might also be determined by their wealth, in fair division all agents
are treated by ignoring their wealth or access to credit.

We now review some fundamental properties and solution concepts of
fair division allocation procedures.

Definition 9. Proportionality is satisfied if u;(X) > 1/n for every agent
a; € A

Definition 10. Utilitarian allocation is X if for any other allocation Y
YaeAi(X) > 20, cauwi(Y). Utility of an allocation is 3, 4 ui(X).

This is usually the preferred solution as it produces the highest overall
welfare, similar to social welfare (efficiency) in auctions. However this might
not always be desired, as some agent might have an unduly low access to a
resource. Considering the properties above, utilitarian solution might not
necessarily be proportional, although it is always Pareto optimal. Thus we
introduce additional concepts that aim for a fairer allocation.

Definition 11. Egalitarian allocation ensures that u;(X) = u;j(X) for any
pair of agents ©,j with i # j

Definition 12. Envy-free allocation ensures that u;(X (a;)) > ui(X(aj))
for any pair of agents i,j with i # j

Definition 13. Nash’s Bargaining Solution is a solution where the product
of individual utilities is at its mazimum, i.e. X is NBS if for any other
allocation Y we always have [[, c 4 ui(X) = [, 4 wi(Y)

In bargaining literature the latter is a predicted outcome of a bargaining
game similar to the fair division problem. However, agents have to nego-
tiate an allocation rather than having some procedure hand it to them.
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Assuming that the agents have enough time and will to negotiate they will
eventually reach the Nash’s Bargaining Solution (Binmore, 2005; Osborne
and Rubinstein, 2011).

1.3.1 Single divisible item

The simplest example of fair division is cake cutting between two agents —
Alice and Bob. Suppose we have a cake with two flavourings (e.g. vanilla
and chocolate). Alice has higher preference for vanilla and Bob for choco-
late. How should the cake bee divided? The cut-and-choose procedure is
simple (e.g. Robertson and Webb, 1998):

e Randomly select an agent as a Cutter

Cutter splits the cake in two

Chooser select one of the pieces
e Cutter receives the remaining piece

In a situation where Alice prefers only vanilla and does not know any-
thing about Bob’s valuations, the best action for her would be to cut the
vanilla part in half. This ensures that Alice will receive at least half of her
value. However if Alice knows Bob’s valuation they can do at least as good
or better. When Bob prefers also only vanilla the result would be the same.
When Bob is indifferent or prefers only chocolate, Alice would do better by
exactly along the chocolate vanilla line. Bob will pick the chocolate half
and the remaining vanilla will remain with Alice. This always assumes that
agents are utility maximising.

The cut-and-choose procedure guarantees that each agent will receive
at least 1/2 of the total cake. Denote vanilla part of the cake with V' and
chocolate with C'. When Alice values only vanilla, her utilities would be
ug(V) = 1 and u,(C) = 0. If she cut the cake in half with u,(V1) =
uq(Va) = 0.5, she guarantees herself at least half of her valuation. However,
when she knows Bob’s valuation, Alice would cut along the vanilla-chocolate
line. Alice would get u,(V) = 1 and Bob would pick u;(C) = 1, thus
achieving greater total social welfare of u, + up = 2.

The 2-agent cut-and-choose could be generalised in many ways (see e.g.
Brams and Taylor, 1996; Robertson and Webb, 1998). We will present
one simpler, cut-your-own algorithm from (Steinhaus, 1969; Robertson and
Webb, 1998).

This example of 3-agents can be easily extended to n-agents. Each agent
divides the cake, or property, to 3 (or some n pieces) such that each piece
Jj is worth at least u;(rj) > 1/3. Iteratively allocate to each agent a non-
overlapping piece, there is always a way to do this. This already guarantees
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1/3 to everyone. Although this procedure might not allocate all the cake
and there usually is something left. This surplus could be allocated in a
similar way, or sold for additional profit.

Players
| Player 1
Player 2

Player 3

0.00 0.25 0.50 0.75 1.00

Figure 1.2: 3-agent example cuts

If we assume that each agent has drawn the lines with his proportional
shares, we would obtain the cuts as overlaid in Figure 1.2. We can guarantee
each agent a proportional share if we do the allocation as indicated by the
colors. There is always a part remaining, unless all the lines overlapped.
An extensions might be as in Figure 1.3. This would guarantee each agent
more than a proportional share, although is might not necessarily be utility
maximising, equitable or envy-free.

Players
Player 1
E Player 2

. Player 3

0.00 0.25 0.50 0.75 1.00

Figure 1.3: Extended division

In general finding an envy-free is harder than proportional. The above
procedure can always find a proportional allocation for any number of
agents, but envy-free procedures are only known up-to four agents (Rothe,
2016, e.g.). And if we are interested in finding a single connected piece for
all agents, then it is impossible in general (Stromquist, 2008).

Regarding computational complexity, the above procedures require n(n—
1)-bits of information on cuts and only one-bit in case of two agents for pro-
portional allocation. In general we could do better, 1+nk—s* = O(nlogn)
(k = |logym|) cuts, which is the best known bound (Robertson and Webb,
1998, p. 94). The lower bound for envy-free protocols is O(n?) (Procaccia,
2009).

1.3.2 Multiple divisible items

These solution concepts are not necessarily aligned even if we had multiple
cakes, e.g. by finding at utilitarian solution it might give unequal shares to
agents. Binmore (2005) presents some simple examples. Caragiannis et al.
(2012) has studied these trade-off in a more general setting, with a larger
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Table 1.7: Price of X on utility for divisible goods

Price of Lower bound | Upper bound
Proportionality Q(y/n) O(y/n)
Envy-Freeness Q(y/n) n—1/
Equitability (n%)z n

Table 1.8: Adjusted Winner example (Brams and Taylor, 1996)

vi() | mi my ms
Agent 1 | .06 .67 .27
Agent 2 | .05 .34 .61

number of agents. In Table 1.7 (from Caragiannis et al., 2012; Veski, 2012),
we present a few bounds on total social welfare in the allocation regarding
other solution concepts. The Table 1.7 shows the ratio of utilities in the
best overall utilitarian solution and best utilitarian solution under some
restriction: proportionality, envy-freeness or equitability.

Brams and Taylor (1996) proposed a simple method for sharing a po-
tentially divisible items among multiple agents. The procedure is called
Adjusted Winner and works as follows:

1. There is a set K of k goods to be divided and two agents
2. Collect valuations v;(k) from each agent 4, such that Z?:l vi(my) =1

3. In an initial allocation X, assign each good to the agent who values
it most

4. if v1(v) > v2(X), for some two agents, adjust allocation X, by trans-

vy (my) v1(m2) v1(myg) .
valms) = valma) = S vp(mg) WO

ferring items m; € X (1) in order
v1(X) < va(X)

5. if v1(X) < v2(X), then select the last good transferred m; and find «
such that v1 (X \ my) + a - vi(my) = v (X \ my) + (1 — @) - va(my)

For example, assume we have valuations as in Table 1.8. An initial
allocation of goods would be X = {1 : {m1,mso},2 : {ms}}, which would

make v1(X) = 0.73 and v1(X) = 0.61. Clearly v1(X) < v2(X). The order

vi(mi) _ 0.06 vi(m2) _ 0.67
va(mi) — 0.05 — wa(ma) ~ 0.34°

After transferring m; we would have v1(X) = 0.66 < va(X) = 0.67. So we
will have to split up ms by solving (1.3). This will result in oo = 0.0099

of items to transfer would be mi = mg, as

0.66 + - 0.34 = 0.0 + (1 — @) - 0.67 (1.3)
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Table 1.9: Correlations

Efficiency Envy Inequality Nash

Efficiency 1
Envy -0.21 1
Inequality 0.18 0.80 1
Nash 0.65 -0.76 -0.59 1

Notice that both agents have an incentive to misrepresent their valua-
tions. For example if Agent 1 would state vi(mg) = 0.4, then the Adjusted
Winner would result in allocation X = {1 : {m1, mg,a-m3},2: (1—a)-ms}.
Clearly Agent 1 gains for misreporting. In Nash equilibrium we assume all
agents do their optimal misrepresentation and know all valuations. The
resulting loss in efficiency is known as Price of Anarchy.

Definition 14. Price of Anarchy is the rate between the optimal OPT

solution and the equilibrium E(Q solution, PoA = OE—PQT

It turns out the worst-case the PoA under some conditions in Adjusted
Winner procedure is 4/3 (Aziz et al., 2015). However, when agents are truth-
ful, Adjusted Winner guarantees that the allocation is envy-free, equitable
and Pareto optimal.

Additionally we see that the Adjusted-Winner procedure sacrifices some
utility for a more egalitarian solution. The social welfare maximising so-
lution would create the value of 134, however the Adjusted-Winner results
in 132.67, which is lower. In Table 1.7 we saw what the costs of different
properties are. Though the relevant solution concept for economist (e.g
Binmore, 2005; Osborne and Rubinstein, 2011) is the Nash Bargaining So-
lution, mainly because it is produced by free bargaining and satisfies some
reasonable axioms. Indeed it also appears that the Nash’s solution also has
some reasonable trade-off between efficiency, inequality and envy and has
the desired correlation direction with these concepts (Veski and Véhandu,
2010, 2011). In Table 1.9 we show the correlations among the criteria in
some situations. We see that the Nash’s Bargaining solution has positive
correlation with efficiency and negative with envy and inequality. That
Nash’s Bargaining solution tends to be fair is also recently explored by
Caragiannis et al. (2016).
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Table 1.10: Price of X on total utility for indivisible goods

Price of Lower bound | Upper bound
Proportionality | n—1+41/n n—1+1/n
Envy-Freeness % —O0(1/n) n—1/

Equitability 00 00

1.3.3 Multiple indivisible items

While sometimes the good are divisible like cake or land, however in some
situations the value of a good is destroyed when split-up. This procedure
requires side payments to make the allocation equitable or envy-free. One
of such procedures is the Knaster’s procedure of sealed bids (Steinhaus,
1948; Brams and Taylor, 1996). The procedure works as follows:

1. In an initial allocation X allocate items to highest bidders

2. Compute side payments Y, such that

_ ui(K) v; (K)

vi(X) +ui(Y) = vi(X) - +v;(Y)

for any 1, j

The main feature of the procedure is that the allocation can be con-
sidered equitable. Each agent receives the same amount of money in their
valuation over what was their fair share. However, the total proportional
share is not equal, as all agents value the entire bundle differently the mon-
etary compensation is also different ratio from the total. In general it is not
envy-free either. Haake et al. (2002) describes a compensation method that
would be envy-free for any number of agents. Also, it can be easily seen
that agents have incentive to misreport their valuations, so the allocation
is not strategy-proof (Lyon, 1986). For example if an agent would under-
report their value, but would still be highest bidder, they would increase
their compensation v;(Y’) amount and consequently their utility.

In Table 1.10 we see the trade-offs in solution concepts in case of in-
divisible items, similarly to the trade-offs in sharing divisible (Caragiannis
et al., 2012; Veski, 2012). The mains observation is that the bounds are
more severe in the indivisible case. We lose more utility, if we need e.g.
envy-freeness and can be infinite if equitable solution is desired.

1.4 Matching markets

A matching market consists of one or two sets of agents and/or items.
At least one set has some preference relationship over the other set. For
example considering one-sided market, with agents and items, only agents
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have preferences over items. This is similar to the fair division model, except
that agents to not have a cardinal value for items, but rather a preference
ordering. Items higher in the order are more preferred and agents seek to
gain items high on their list and they are strategic about maximising their
utility.

We concentrate on two-sided matching, that is there is an ordering
on both sides. Agents would have preferences over agents on the other
side. This model arises in many situations, for example matching jobs to
employees. Previously, we had valuations only on one, the agent’s side.
Also, when the other side is of items not of agents we talk about priorities
that items have over to which agent it should be allocated to. In case
of priorities we assume are non-manipulable, whereas preferences could be
misreported for utility maximisation.

Table 1.11: Agents’ preferences

Side A preferences Side B preferences
a1:b2>b1>b3 blza1>a2>a3
as : by = by by :az > a1 = as
as : by = by = b3 bs : a1 > ag

In Table 1.11 we have an example of preferences on two-sides of the
market. We could think of side A and B respectively as men or women,
or jobs and employees depending on the situation. Ultimately we need to
find a matching between A and B. If we are interested in maximising social
welfare, we might well consider results from graph theory and find the max-
imum matching, using for example the Hungarian method O(n?m) (Kuhn,
1955), (e.g Lovasz and Plummer, 2009; Schrijver, 2003), which works with
weighted and unweighed graphs, or more efficient Hopcroft-Karp algorithm
O(n%m)) (Hopcroft and Karp, 1971, 1973) and (e.g. Lovasz and Plummer,
2009; Schrijver, 2003). Here n and m are respectively vertices and edges in
a graph and an undirected graph can have at most n? unique edges.

However, the maximum matching might not be rational for all parties
to be part of. It might be better for two agents, e.g. man and a woman, to
form a match outside the matching procedure, as they would both result in
a more preferred match. In case of preferences as in Table 1.11. The size
of a maximum matching is 3 and in any maximum matching as would have
to be matched to either by or by. There are four possible matches of size 3
and in each matching there is a pair of agents who would prefer to match
outside of the algorithm (Table 1.12).
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Table 1.12: Maximum, but unstable matchings

Matching Outside | Matching Outside
a1—61 al—bg al—bz
as — by as — by as — by
a3—bg a3—b2 a3—b1
Matching Outside | Matching Outside
al—bQ al—bg al—bl
as — by as — by
as — b az —by | a3z — by

For example in the first matching (upper left corner) agent pair ag — bo
would rather be matched to each other than their current match. The agent
ag prefers by to bs and by prefers as to as (Table 1.11). So we see that in
all the maximum matchings there is no such matching that would not have
this type of blocking pair. So we need to approach more carefully to find a
matching.

Furthermore if the matching procedure depends on agents’ preferences
they might be strategic about how they present their preferences. There are
only two known mechanisms (algorithms) that are strategy-proof for at least
for one side of the market — the Deferred-Acceptance and the Top Trading
Cycles (Abdulkadiroglu and Sénmez, 2003, e.g.). Deferred-Acceptance is
also known as Gale-Shapley algorithm (Gale and Shapley, 1962) for sta-
ble marriages. In a stable matching there are no blocking pairs as in the
maximum matching example. Moving forward we concentrate on stable
matchings and the Deferred-Acceptance algorithm and its properties.

More formally we employ a model similar to that used in modelling
centralised two-sided matching markets (e.g. Roth, 2008). There is a set
A ={ai,...,an, } of agents on one side and a set B = {by, ..., by, } of agents
on the other side. The number of agents on both sides can differ (n4 # np)
depending on market thickness. Each agent a; from A has a strict preference
relation >, over agents in B, and similarly for b; € B there is a preference
relation =, over agents in A. A matching p is a mapping from AU B to
itself, so that for every a; € A, is matched to u(a;) € BU{a;}, and similarly
for b; € B, pu(bj) € AU{b;}. When an agent is matched to itself, p(a;) = a;
or 1(bj) = b; respectively indicates that they are in fact unmatched. Being
matched to itself is the least preferred option for all the agents. In addition,
for every a;,b; € AU B, p(a;) = b; implies pu(b;) = a;.
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Definition 15. A matching is unstable if there are at least two agents
a; and b; from opposite sides of the market such that b; >, p(a;) and
a; > b, p(bj) — a blocking pair. A matching is stable, if it is not unstable.

A stable matching with preferences as in Table 1.11 would be: p =
{a1 — by,a3 — by}, which is not maximum possible matching, as this was
impossible. Making the resulting matching stable does not yield a pair of
agents who would find a better matching outside the procedure, because
by definition that opportunity does not exist. Still the question if it is
beneficial for all agents to state their true preferences is open. For this we
first need to define an optimality of a matching.

Definition 16. A stable matching p is optimal for agents in A if there
is no stable matching v for which v(a;) =4, p(a;) or v(a;) = wu(a;) for all
a; € A and v(a;) =q; p(a;) for at least one aj € A

Then it turns out that if the matching is stable and optimal for agents
in A then it is strategy-proof for those agents.

Theorem 3. In the matching procedure which always yields the optimal
stable outcome for a given one of the two sets of agents (i.e., for A or for
B), truthful revelation is a dominant strategy for all the agents in that set
(Roth, 1982)

Table 1.13: Preferences with multiple stable matchings

Side a preferences Side b preferences
ai : by = bo b1 :a9 = a1
as : by = by by a1 = ao

In general the set of stable matchings can be greater than one (Knuth,
1997b) and not all are optimal matchings for all the agents in A or 5. For
example with preferences in Table 1.13 we can obtain two stable matchings:
w1 = {a; —by,as — ba} and pg = {a; — be,as — b1 }. In either case there are
no blocking pairs and in one case agents in 4 obtain their first preferences
and in the second agents in B obtain their first preferences. This turns out
to be a general property of stable matchings (Knuth, 1997b).

Theorem 4. No stable matching procedure for the general matching prob-
lem exists for which truthful revelation of preferences is a dominant strategy
for all agents. (Roth, 1982)

Also it turns out that the number of agents is the same in any stable
matching, even more, in some conditions the same set of agents get matched.
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Theorem 5. When all preferences over individuals are strict, and hospitals
have responsive preferences, the set of students employed and positions filled
is the same at every stable matching. Furthermore, any hospital that has
some empty positions at some stable matching is assigned precisely the same
set of students at every stable matching (e.g. Roth, 2008; Manlove, 2013,
“Rural Hospitals” Theorem)

In cases, where the preferences are complete, as in Table 1.13, all agents
are can matched in a stable matching. However, when preferences are in-
complete, as in Table 1.11, the size of the maximum and stable matchings
may be different. If we are allowed to have blocking pairs, the objective
could be to find a maximum matching with a minimum number of block-
ing pairs, number of agents with blocking pairs (Eriksson and Haggstrom,
2007) or even number of instances of envied agents in blocking pairs (Ab-
dulkadiroglu et al., 2017).

In general it turns out it is hard to find among maximum matchings,
and matching with the minimum number of blocking pairs or agents.

Theorem 6. Finding a matching with minimum number of blocking pairs
or agents among mazimum matchings is not approzimable within n'~¢,
where . is the number of agents in a given instance, for any € > 0, unless

P = NP. (Bird et al., 2010b)

Additional results showed that this hold when the length of the prefer-
ence lists is limited to 3 (Hamada et al., 2009). However, when on at least
one side preferences are limited to 2, finding a matching with minimum
number of blocking pairs or agents is solvable in O(n3) (Biré et al., 2010b).

1.4.1 Two-sided matching - stable marriage

The stable marriage problem (Knuth, 1997b) is the simplest of the two-
sided matching problems. There are two sets of agents A and BB or men and
women. Each agents can be matched to at most one agent from the other
set. In the simplest case all men and women have full list of preferences over
respectively women and men. This ensures that all agents can be matched.
Although this model can be easily generalised to a stable marriage with
incomplete lists (Manlove, 2013, p. 22) by assuming that some agents can
be left unmatched. The definition of stability remains the same if we assume
that the last option on each agent’s preference list is to be matched to itself.

To find a man (or woman) optimal stable matching we can use the
Deferred-Acceptance algorithms as proposed by Gale and Shapley (1962):
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1. Each man proposes to his most preferred woman. Each woman who
received more than one proposal rejects all, but her most favourite
amount those who have proposed to her. However, she does not accept
him yet, but keeps on a string to allow for the possibility of someone
better may come along later

2. In the second stage those men who were rejected now propose to
their second choices. Again each woman receiving proposals chooses
her favourite from the group consisting of the new proposers and the
man on her string, if any. She rejects all the rest and again keeps the
favourite in suspense.

3. We proceed in the same manner. Those rejected at the second stage
propose to their next choices, and the women again reject all but their
best proposal they have had so far.

The algorithm continues until all the men are matched or have reached
the end of their preference lists. Then the matching is declared final. The
algorithms runs in O(nm) time, where n is the number of applicants and
m the number of responders, or the average length of preference lists. Gale
and Shapley (1962) showed that

Theorem 7. FEvery applicant is at least as well off under the assignment
given by the Deferred-Acceptance procedure as he would be under any other
stable assignment

The stable marriage problem can also be extended to a college admis-
sion problem or hospitals/residents problem (Gale and Shapley, 1962; Roth
and Sotomayor, 1990; Manlove, 2013). On one side of the market we have
students or residents, who can be accepted to at most one college or hospi-
tal. On the other side we have colleges or hospitals who have some capacity
¢; on how many applicants they can accept. Both students and colleges still
have preferences over each other.

The Deferred-Acceptance procedure would need to be slightly tweaked
to work in this more general setting. To find a student optimal matching,
student would still propose to colleges, but colleges only reject students
who are above their capacity c¢; and lower on their preference lists. Gale
and Shapley (1962) show that Theorem 7 holds here as well.

The Deferred-Acceptance procedure can be reversed to find a woman
optimal matching or a college optimal stable matching. It turns out that
this matching is the worst possible stable matching for men or students
respectively. Also depending on who is the proposer the matching procedure
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is strategy-proof for the proposers. In equilibrium reporting in the Deferred-
Acceptance allocation is still stable with respect to true preferences (Roth,
1984; Sotomayor, 2012). However this might not be the case even when the
proposers are colleges, as in the college admission problem as colleges can
accept multiple students and is thus a more general problem (Roth, 1985).

The earliest use of the Deferred-Acceptance algorithms was in US Na-
tional Residency Matching Program that matched fresh doctors to their
first jobs in hospitals. Initially a hospital proposing algorithm was used that
created protest from applicants and was changed in 1998 (Roth, 1997) to
be applicant proposing Deferred-Acceptance. However Roth (1997) found
that this benefited a very small number of applicants, less than 1 in 1000.
So the the difference in being a proposer in negligible in real world mar-
kets. Further results (Kojima and Pathak, 2009; Immorlica and Mahdian,
2015) show that in large markets the number of stable partners is small
and hospital and student optimal stable matchings are very close.

Although the options for manipulations might be small agents are still
motivated to find them if they exist. Teo et al. (2001) shows that if one
agent from the accepting, B-side, would know all the preferences of others
participants, it can effectively use the DA algorithm to find an optimal
truncation of preference list in O(n?) time. They also show that probability
of benefiting by cheating is small. In instances of size |A| = |B| = 8 on
average about 5% of agents in B benefit and in instances 100 and 500
agents on both sides on average about 10% of agents from B benefit.

Matsui (2011) presents algorithms in stable marriage matching for agents
in B jointly to manipulate a matching, by permuting their preference lists.
First he gave an O(n?) to check, given a matching 4/, if there is a joint strat-
egy for women that is an equilibrium and y’ is the outcome of A-optimal
matching. Second also gave an O(n*) algorithm to check if a given joint
strategy is an equilibrium or not.

Sonmez (1997) and Sénmez (1999) further show that colleges and hos-
pitals can in general manipulate stable matchings by misreporting their
capacities and pre-arranging matches.

1.4.2 Two-sided matching - school choice

In many situations the preferences for one side of the market are based on
some objective non-manipulable criteria like an exam score, distance from
home etc. In this situation the allocation mechanism could be considered
strategy-proof overall. In the case when preferences are determined by ob-
jective criteria we call them priorities as they are not individual preferences
of schools, but rather given by a central planner and cannot be manip-
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ulated. In turns out that this arises in many situations of school choice
(Abdulkadiroglu and Sénmez, 2003; Pathak and Sénmez, 2013) and even
college admission (Aygiin and Bo, 2013).

In designing mechanisms for school choice another type of question de-
velops — how to select the criteria and implement the priorities? In most
situations the goal of the central planner is to use fair criteria for allocating
available positions or affirmative action for more disadvantaged part of the
society (Aygiin and Bo, 2013; Kominers and Sénmez, 2013; Alcalde and
Subiza, 2014). In some circumstances there is no objective criteria and a
random lottery is used to allocate students to positions and experiments
show (Abdulkadiroglu et al., 2009) than one needs to be careful how the
lotteries are implemented.

A critical part in ensuring strategy-proofness is not to limit the prefer-
ences revealed to the mechanism (Abdulkadiroglu et al., 2009). The limi-
tation is believed to help applicants state their preferences, as they do not
have to evaluate so many schools. Actually it turns out this introduces
another complexity to the problem, since participants also need to consider
what to report (Haeringer and Klijn, 2009).

Table 1.14: Agents’ preferences

Side A preferences Side B preferences
a1 : by = by > b3 b1 :a1 > as > ag
a2:b1>b2>b3 bg:a3>a1>a2
as : by > by > b3 bs a1 > ag > by

We have slightly augmented preferences in Table 1.14 from Table 1.11.
An A-optimal stable matching with original preferences would be: u =
{a1 — bi,as — b3,a3 — be}. Now if we limit the number of preferences to
two as would be unmatched, so it is better for him to report for example:
ba = bs. Of course this would depend on others’ preferences, information
which might be hard to obtain, thus introduces uncertainty on the best
course of action.

The best course for a designer is usually not to limit preference sub-
mission. However, in school choice families do not usually have resources
to evaluate too many school. Some school district solve this problem by
providing limited menus to students (Shi, 2015) and in many cases the
preference lists are limited in practice (Pathak and Sénmez, 2013). Both
approaches are not without their problems and there is currently no ideal
solution.
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1.4.3 Algorithms for on-line and decentralised matching

In some cases it might be hard to organise a centralised matching scheme.
Roth and Vate (1990) observe that some of these decentralised matching
markets are still in operation, thus might reach a stable outcome. They pro-
pose a procedure (RVV) by randomly satisfying blocking pairs and show
that this random sequence converges to a stable matching with the proba-
bility of 1. In case of equal number of agents with full preference list the
computational complexity of this algorithm is still polynomial — O(n?*) (see
Manlove, 2013, p. 81-82). Another slightly different decentralised algo-
rithm (ROM) is presented by Ma (1996). Many results from RVV carry
over to ROM. In these decentralised mechanisms that agents arrive in se-
quence and are matched to already arrived agents. It turns out that it can
be beneficial for an agent to arrive later (Blum and Rothblum, 2002). This
is interesting when comparing to winning strategies in a continuous double
auction market in section 1.5.2.

However, these algorithms rely on agents fully knowing their preferences
and selecting the best possible blocking pair to satisfy in each step. In
chapter 2 we explore a randomised setting, where agents do not know their
preferences and cannot make proposals to their best blocking pair. Some of
the randomised setting have been previously explored by Ackermann et al.
(2008) and they give an exponential lower bound for the convergence time
to a stable matching.

More recently on-line matching problems and their application in e-
commerce have become more prominent. Mehta (2013a) survey matching
algorithms, which include vertex-weighted and other more complex val-
uation functions. Furthermore, they do not necessarily consider stable
matchings, rather they are interested in maximum matchings. As stable
matchings might be smaller, then for an e-commerce maximum matchings
can potentially produce more revenue. However, Mehta (2013a) does not
consider manipulations, which might reduce the overall revenue.

Gu et al. (2015) describe a framework for wireless resource allocation
using stable matching and also considers on-line (dynamic) versions. Other
application include taxi scheduling (Bai et al., 2014), allocating CPU re-
sources (Wang et al., 2015) and more. Khuller et al. (1994) considers stable
on-line matching and shows that randomised algorithms would results in
at least 2(n?) blocking pairs. Lee (1999) experiment with windowing the
incoming requests, so they are not immediately matched, but wait until
window closes and potentially more agents or resources are available.
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1.4.4 Other matching problems

There are many other matching settings, see books (Mehta, 2013b; Manlove,
2013) for a more extensive treatment. We will review two additional types
and highlight some of their applications.

The stable roommates problem is a non-bipartite generalisation of the
stable matching problem (Manlove, 2013). There is just one set of agents
and each agents has a preference list over other agents in the same set.
The goal is to find a pairing of agents that could for example share the
same room in a college campus. The notion of stability can be defined in
a similar manner as we did for two-sided markets. It turns out that stable
roommates problem might not admit a stable matching (e.g. Manlove, 2013,
p. 33), but if a stable matching exists we can find it in O(n?) time Irving
(1985).

The obvious a application of stable roommates problem is allocating
college students to share rooms on campus. Recently this has also been
studied involving kidney exchange markets. In this market a patient in
need of a kidney might have a donor, who is willing to donate, but is
incompatible. The kidney exchange market can help find for a swap an-
other patient, who also has an incompatible donor. Here preference lists
would constructed by compatibility between patients and donors. Allo-
cation schemes exist in many countries, for example UK (Manlove and
O’Malley, 2012), Netherlands Keizer et al. (2005) and US (Roth et al.,
2007; Beard et al., 2012; Dickerson et al., 2012). There is also a similar
organisation in Estonia (EKOTU, 2016), but how the actual matching is
organised in unclear. (Manlove, 2013, p. 37-38) highlights few other appli-
cations of the stable roommates problem.

Another more prominent matching problem is the house allocation prob-
lem (Manlove, 2013; Schummer and Vohra, 2007). There is a set of agents
and a set of houses. Each agents has a strict preference over houses and
each agents owns a unique house. A goal is to reallocate the houses in a bet-
ter way. Whereas in the two-sided market both sides had preferences, here
houses do not have preferences over agents. A Pareto optimal matching
of houses to agents is returned by the Top Trading Cycles (TTC) algo-
rithm. The TTC algorithm is also strategy-proof for all the agents (e.g.
Schummer and Vohra, 2007, p. 254). An important modification of the
TTC algorithm (Abdulkadiroglu and Sénmez, 2003) allows us to use this
for school choice settings. The result of the TTC can be a better match for
the applicant, however the resulting allocation might not be stable, but is
still strategy-proof for the applicants. Potentially unstable allocation might
explain why it is not widely in use. Although this has also been studied for
kidney allocation (Roth et al., 2004).
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In school choice setting we have preferences from one side and priorities
from the other, which are not directly influenced for the other side, but
are used for prioritising. The A-optimal stable matching from Table 1.14
is p = {a; — by,as — b3, az — ba}. We see that agents a; and az would be
both better off if they exchanged their matches, they would both obtain
their first preference instead of the second: u = {a; — b, as — b, a3 — by }.
This of course assumes that we have priorities not preferences on side B.
But as a result the matching is no longer stable, as the pair as — b; is a
blocking pair and agent as was not even involved in the exchange between
aj; and as. So allowing these improving exchanges might create unstable
matchings.

1.5 Limits of the axiomatic approach

We saw that auctions were mostly analysed in a homogeneous setting. For
example analysing equilibrium strategies, agent were drawn from the same
distribution and acted as in equilibrium. However, when agents are het-
erogeneous in their behaviour and preferences, it is harder to analytically
understand potential outcomes. Often there are multiple equilibria and it
is hard to predict which will prevail and in a dynamic setting there might
be punctuated equilibria.

Computational agent-based models aim to make more general assump-
tions and study markets and economies in a less idealised situations. Having
heterogeneous and interacting agents whose behaviour is based on heuristics
rather than optimal rational choices. With the computational power these
models have the potential to make predictions more relevant for human
agent societies.

We survey two settings, combinatorial and double auctions, to show
how agent-based experiments can augment the axiomatic results.

1.5.1 Combinatorial auctions and limits of theory

Combinatorial auctions consider complementaries or substitutes in agents’
valuation. That is for some items S and 7T the value of obtaining these two
items might be (Blumrosen and Nisan, 2007):

e lower than the total value v(S UT) < v(S) + v(T) of just obtaining
S or T, that is the items are substitutes

e higher than the total value v(SUT) > v(S) 4+ v(T") of just obtaining
S or T, that is the items are complementary
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This makes finding a solution much harder in many ways. First how to
find the welfare maximising allocation, which is computationally NP-hard
even for simple cases (Blumrosen and Nisan, 2007). Second collecting infor-
mation on bidders’ valuations for packages, which might be exponentially
large. Third how to analyse strategic behaviour?

Lehmann et al. (2011) discusses the computational problem and find
that in addition for the problem to be NP-hard it is also inapproximable in
general. Intuitively we can think of having some set of k items there are 2F
subsets we would need to evaluate to determine the efficient solution. They
even find it being NP-hard, when using a particular bidding language, like
the OR and XOR.

How should bids be submitted to combinatorial auctions? In single-item
auctions bidding was easy, the agents only needed to submit one bid. In
combinatorial auctions each bidder should in a naive case submit 2¥ bids
for k items. In other words the bidder should evaluate each possible bundle
of items. Even in an auction where the number of items is small this could
amount to significant number of bids, eg when n = 10, 2'0 = 1024 bids,
which is infeasible for the bidder to express or evaluate. A better way is
required. We present a short overview from Nisan (2010).

Definition 17. Simple atomic bids. FEach bidder submits a pair (S,b),
where v(S) = b the price the bidder is willing to pay for a subset S of
items. Meaning that for each T C S v(T) = p and otherwise v(T) = 0.

Definition 18. OR bids. FEach bidder submits a number of atomic bids
(Si, bi), where v(S;) = b;. The bidder is willing to obtain any subset T =
S; U S; where S; N S; =0 for the combined price pr = v(S;) +v(S;). The
bids/values for items can be computed by
J
v(S) =

max ZU(SZ')
Sl,...75'1'65,51ﬁSQZ@,...,SlﬂSj:@,...,Sj_lﬂsj':@ i1

For example a bidder submits an OR set of atomic bids (1.4).
{(s1,1), (52,2), (83,4), ({52, 83}, 7)} (1.4)
Then the values for additional subsets would be:
e v({s1,s2}) = max(v(s1) + v(s2)) = max(1+2) =3

o v({s1,s2,s3}) = max((v(s1) + v(s2) + v(s3)), (v(s1) +v({s2,83}))) =
max(1+2+4,14+7)=8

OR bidding language can represent additive valuations, for which v(sU
T) > v(S) +v(T), where SNT = (), and not substitutable valuations.
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Definition 19. XOR bids. The bidder still submits an arbitrary number
of atomic bids (S, b;), but he is willing to obtain just one of the subset of
items. The bid for a set of items is calculated as

v(S) = max b;
S;CS

XOR bids can represent all valuations Nisan (2010), although some of the
additive values may require an exponential number (2F) of bids.

For example a bidder submits a XOR set of atomic bids (1.5).

{(s1,1), (52,2), (s3,4), ({52, 53}, 5)} (1.5)

Then the values for additional subsets would be:
o o({s1,52}) = max(v(s1), v(s2)) = max(1,2) = 2
(59, 53}) = max(v(sa), v(s3), v({s2, 53})) = max(2,4,5) = 5

o v({s1,s2,s3}) = max((v(s1),v(s2),v(s3)v({s2,83}))) =
=max(1,2,4,5) =5

o
o

With XOR the value for {s2,s3} is v({s2,s3}) = 5, because the items
are partially substitutable, whereas with the OR language the bid would
had been v({s2, s3}) = max(v(s2) + v(s3),v({s2,s3})) = max(2+4,5) = 6,
because the bids would had been considered additive.

Obviously to make the bidding simpler we can consider a combination of
OR and XOR bids to present additive and substitutable valuations. Nisan
(2010) covers some simpler cases of combining OR and XOR bids.

From section 1.2.3 we know that the only way for strategy-proof value
elicitation is to use Groves mechanisms. This takes us back to the com-
putational complexity. We could need to compute n alternative efficient
allocations to compute the payments and in combinatorial auctions already
one of these was hard. However, alternative mechanisms would induce some
sort of strategic behaviour.

Restricting the size of bundles is an option for limiting the complexity
(Lehmann et al., 2011). Here computational experiments with various pa-
rameters are used to determine the auction format. An et al. (2005) defines
some potential strategies for the bidders and vary the number of bidders
submitting bundle bids and investigate the effect these have on the auction-
eer’s revenue. They find that more bundle bids increase the revenue of the
auctioneer and allocative efficiency. Sureka and Wurman (2005) and Mo-
chon et al. (2009) use meta-heuristics, genetic algorithms and tabu search,
to find Nash equilibrium strategies in combinatorial auctions. This is simi-
lar to the evaluation problem — value queries to the bidding language. Given
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some subset S of items determine v(S). Value queries can be as hard as
optimization problems for welfare maximising allocations. The intuition is
that to compute the value in the OR bidding language, we would still need
to evaluate many potential ways how to subset the items to calculate the
sums, over which we would need to take the maximum value.

If bidders have some intuitive sense of the value functions it needs to be
experimentally evaluated how to best transform it to actual bids. In some
cases it might be easier when the bidder have some linear or quadratic addi-
tive value function, how to best transform it to a given bidding language. Is
some cases the bid intervals might be given as in energy markets (Contreras
et al., 2001).

Calculating social welfare maximising allocation is hard in combinato-
rial auctions. If we consider some very general bidding language we usually
need to evaluate n* potential allocations, where n is the number of bid-
ders and k the number of single items. Leyton-Brown and Shoham (2010)
have developed a generator package to test winner determination in combi-
natorial auction. Holte (2001) run computational experiments for finding
some expected, statistical, welfare guarantees. They use multidimensional
knapsack problems to test for allocative efficiency. Schwind et al. (2003)
uses similar meta-heuristic approach and also compares some existing de-
terministic formats. While others (Sandholm, 2010) have designed optimal
allocations algorithms for some instances.

Some straightforward implementations for combinatorial auctions might
turn out to be very bad. Sequential auctions are a bad idea. For example
when there is a number of perfectly substitutable items for sale and we
would allocate them in n sequential auctions. In the first second-price
auction the price would be end highest, in the next auction thirds highest
and so on. And at the last auction the price would be lowest, so bidders
would always wait to bid in later auctions. So always bidding true value is
not the best idea. See Swiss example by (Cramton, 2010, p. 102).

Additionally, sealed-bid auction on individual items is not a good idea
as items have substitutes and complements and good package bidding is
not available. It would be hard to figure out for which single items to bid,
as winning any particular item is probabilistic, a bidder would never know
if he would end up with a desirable package. And we already know why
bidding for packages to not feasible.

In US and other countries have used the Simultaneous Ascending Auc-
tion (SAA) to allocate spectrum licenses to telecommunication providers
(e.g. Klemperer, 2004b). This is not necessarily efficient or strategy-proof
(Kagel et al., 2010). The SAA broadly works as follows:

e The seller (auctioneer) decides how to split the item for bidding. This
is important decision as it will affect how bids are placed
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e Buyers then bid for the items and may bid on multiple items (li-
censes) simultaneously. As for each bidder the aim is to cover some
geographical area and usually is differs across bidders.

o The first round with no new bids ends the auction

Wellman et al. (2008) highlights bidding strategies that could be used in
SAA, but also state that they are not optimal, which indicates the hardness
of analysing the SAA mechanism. They also show that the near-optimal
strategy is dependent on the structure of the environment, as characterized
by complementary and substitutable valuations.

New types of practical problems arise in SAA. Bidders may not want a
package of items that are missing some crucial items or package of items that
are considered duplicates by the buyer. To avoid these problems usually
some additional rules are defined in SAA:

e Activity rule: throughout the auctions the activity of the bidders can
only decrease. As the prices will go up buyers are less willing to obtain
the item.

e As some aggregations might fail, bidders are allowed to withdraw
bids. This creates strategic behaviour as bidders are not responsible
for their highest bid. Is usually regulated with fines to the high bidder
after withdrawal

e Bidders often have a quantity cap to the number of items they can
obtain

e Bidders usually have some initial down payment to ensure they are
really interested in the auction. This is refunded depending on the
final allocation

e Bids are incremented not freely placed by the bidders

The activity rule contributes to the price discovery process for all items.
As bids increase buyers can decide on which items to continue bidding and
for which items to stop. Additionally determining bids for all potential
packages of items is hard, so price discovery will help in figuring out for
which packages it might be profitable to bid and for which not. The specific
packages of interest can potentially change throughout the auction.

Signalling other bidders to keep the prices down. If there are two items
that are generally considered complements it is profitable for two buyers to
agree among each other who will get which item, as they will not compete
for the same item, thus the price will not increase. This has happened in
the past. In one auction a winning bid was $47,505,673, surely the buyer
would not care up to a dollar how much he would pay. In another auction
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a bidder made several bids ending with 378, outbidding another bidder
several times. The bids seem to have been retaliation for bidding in area
378 (see footnote in Milgrom, 2004, p. 267).

Inefficiencies can arise in a SAA type auction. Suppose there are two
parking spaces to be allocated. Bidder 1 has a trailer desires both places
with v1({a,b}) = 100. The second bidder 2 values both spots at the same
price va(a) = va(b) = 75. The efficiency maximising allocation would be to
give both places to the first bidder. If we look at the SAA process, suppose
the bids are $50 for each of the spots and the first bidder is the high bidder.
His utility in the case of winning would be 0. However for bidder 2 there is
an incentive to increase any of the bids and would pay the bid. In case of
package bidding and VCG the spots would be both allocated to bidder 1,
for the price of $75 (see example in Cramton, 2010, p. 102).

This has also been referred to as the exposure problem. To win both
items bidder 1 would have to bid $150, thus creating negative utility. When
the current high bids for both items are $40 and say the bid increment is
$10. The second bidder would increase the bid for one spot to $50 and the
second bidder does not have incentive to raise his bid anymore, because his
utility would become 0. Nevertheless he is stuck with one of the spots for
the price of $40, which alone does not provide any utility. Maybe bidder 1
should not have bid for both spots at $40, but given his limited knowledge
of second bidders valuation (it might be $40), he still has the potential to
gain some positive utility.

Demand reduction involves not bidding on a second or a third substi-
tute, so as not to increase bidding by other on the first item. In multi-unit
auctions the demand reduction can be achieved by collusion, e.g. agreeing
who will bid on what item, so the price will stay low. Suppose there are
two identical items a and b and two bidders, with both valuing a single
item at $100. How would they bid? In a competitive environment both
would increase their bids until it would be close to $100 on both items, say
$99. Now if bidders would be able to communicate they would agree not
to increase the bids on other items. Both would win the auction at the
starting price (e.g. Cramton, 2010, p. 107).

Experimental papers (Kagel et al., 2010, 2014) compare two feasible
mechanism for combinatorial auctions: combinatorial clock auction (CAA)
and SAA. As theoretically analysing these mechanisms is hard, they use a
combination of computational and human experiments to compare the two
auction formats. Initially (Kagel et al., 2010) they find that SAA might
provide more revenue than CAA, while is some situations having lower
efficiency. Later (Kagel et al., 2014) that human bidders do not deal well
with the package selection problem. Humans bias towards other signals,
for example how the packages are named. This caused humans to behave

50



irrationally in CAA, they did not bid on more profitable packages (Kagel
et al., 2014). When package names match human bidder valuations the
outcome of CAA is efficient, but when not then SAA is more efficient.

1.5.2 Double sided auctions and complex systems

Single-item auctions are most popular, applicable when there is one unique
item for sale, like a work of art. Combinatorial auctions arise when there
are multiple different items for sale, which might be complementary or
substitutable, like spectrum or bus routes etc. In a situation when we have
multiple units of identical items the most often used mechanism type is
the double auction. This is because in this situation there usually are also
multiple sellers and buyers. In the case when there are only buyers, the
VCG or some modified single-side auction type could be employed.

Double sided auctions arise when there are multiple identical items for
sale and multiple sellers and buyers. The most frequent setting is buying
and selling stocks, commodities like wheat, coffee etc. More recent appli-
cations include energy pricing (e.g. Nicolaisen et al., 2001; Faqiry and Das,
2016) or allocating cloud and communications resources (e.g. Ji and Ray
Liu, 2006; Wang et al., 2010; Han et al., 2011b).

In a double auction there is a set of sellers S and a set of buyers B. To
simplify we assume that all sellers are selling one unit of identical goods
each and buyers are interested in buying one good each. All sellers have
some cost, reserve price, ¢; associated with good they are selling, below
which they would not sell. Similarly each buyer has a valuation v; for a
unit of good, above which they would not obtain the good. The goal of the
double auction mechanism is to find a price p that would realise all trading
opportunities. The resulting utilities of the agents are u; = p — ¢; for sellers
and u; = vj — p for buyers.

A seminal paper in designing a trutful static double auction is by McAfee
(1992). They design a strategy-proof mechanism, however note that is
is not necessarily efficient. McAfee (1992) mechanism assumes multiple
buyers and sellers (> 2) otherwise the mechanism does not work. They
analyse the efficiency of the mechanism via computational experiments, as
the analytical form is uninformative in this regard.

A more general setting is the k-double auction, however there is no
closed form solution to finding equilibria in this setting (Satterthwaite and
Williams, 1993). Satterthwaite and Williams (1989a, 1993) analyse the
k-double auction. The price in this mechanism in determined by p =
kb+ (1 —k)a, where k € [0, 1] and [a, b] is the interval in which the market-
clearing price is selected. After the price is determined, all agents with a
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positive utility trade with the clearing price p. Satterthwaite and Williams
(1989b) also conduct simulations to understand the efficiency of their auc-
tion format.

For example, assume we have four sellers and four buyers. Each agent
is interested in buying or selling one unit of the good. Sellers have costs C =
{0.39,0.43,0.49, 0.64} and buyers have valuations V = {0.11,0.32,0.64,0.71}.
The respective supply-demand curves are presented in Figure 1.4.

2
Quantity

Figure 1.4: Supply-demand curve (k-double auction mechanism)

In the k-double auction market clearing price is in the interval [0.43, 0.49]
and at most two trades can be realised. The interval is determined by
ordering the costs and valuations, s; € C UV, in an ascending order
sy < 8@2) < -+ < S(2m) and setting the interval to [s(m,), S(m41)]. McAfee
(1992) uses a different method for selecting, but essentially yields a similar
interval.

The cases when k& = 1 and k£ = 0 are special in terms of incentives. In
1-double auction the price equals s(,,41), thus the sellers have no incentive
to misreport their costs as the price is already at its maximum. If sellers
currently below 0.49 would individually increase their reported cost above
0.49 they would not trade and would gain zero utility. Otherwise they would
gain positive utility. Similarly in 0-double auction the price is s(,,) and the
buyers have no incentive to misreport. In case the price is in the interval
(0.43,0.49) all agents have an incentive to misreport to some degree.

Satterthwaite and Williams (1993) show the form of symmetric Bayes-
Nash equilibrium reporting strategies, assuming all agents know the distri-
butions F and G from where respectively sellers and buyers valuations are
drawn.
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Theorem 8. (Satterthwaite and Williams, 1993, Theorem 1) Consider any
equilibrium (fs, fg) in which trade occurs with positive probability, every
seller always asks as much as hist cost, and every buyers bids at most his
value. A number k exists, whose value is a function of F and G, but not of
m or (S, B), such that, for all v € (v,1] and c € |0,¢),
K

S(c) —c< - (1.6)

and

v—B(v) < % (1.7)

Also k o< k. There is also a certain region where trades do not occur
due to misreporting, since sellers Bayes-Nash reporting strategy is above
buyers’ value and similarly buyers reporting strategy is below sellers’ price.
These values are v and ¢ respectively. Figure 1.5 illustrates the equilibrium
strategies and no-trade regions. The centre square has a positive probability
for a trade, when the cost and value are suitable. On the borders trades
never occur, even when the actual cost and valuations would be suitable,
as the equilibrium reporting would exclude it. Even when the actual cost
is close to zero, the seller would report v, so if seller valuation is below
this there is no trade. Similarly the seller would never report more than c.
From (1.6) and (1.7) we see that the misreporting decreases as the number
of agents in the market increases in proportion to (9(%)

: :

. — . —+ ‘

0 v 0.25 0.5 0.75 c 1
c, Vv

Note: Adapted with permission from Elsevier.

Figure 1.5: Equilibrium strategy pair (fs, fg) (Satterthwaite and
Williams, 1993).

In reality the common assumptions required by the Bayes-Nash equilib-
rium concept might not be satisfied. The assumption was that all agents
have same prior information about the distribution of private costs and val-
ues of each agent. Satterthwaite and Williams (1993) show that by slightly
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modifying the the allocation mechanism the equilibrium strategies can vary
widely, but Kagel and Vogt (1993) show that in human experiments there
is no significant change in strategies.

For market efficiency we look at the total utility gain by the traders,
agents who actually trade. Since the trade units have to be equal, the
number of trading buyers and sellers is the same.

TU=> (p—c)+ Y (bi—p)=> bi— > ¢ (1.8)
ics icB i€B €S

Let’s denote by TU(fs, fB) the total utility gain, when agents play their
equilibrium strategies and by TU(f§, f) the potential (optimal) gain when
agents would reveal their true costs and valuations.

Definition 20. We define relative efficiency p in double auction as

TU(fs,[B)
TU(fs, f5)

This definition is the inverse of a similar definition of Price of Anarchy
(e.g. Roughgarden, 2005).

p(S,B) =

Theorem 9. (Satterthwaite and Williams, 1993, Theorem 2) Consider any
equilibrium (fs, fg) in which trade occurs with positive probability, every
seller always offers at least as much as hist cost, and every buyer bids at
most his value. A constant £ exists, whose value is a function of F and G,
but not of m or (fs, fB), such that the relative efficiency in the k-double
auction is as least ¢

m2

1—

So when the market is large, then the relative efficiency approaches one.
Conversely to the k-double auction, McAfee (1992) first discovered a
strategy-proof static double auction mechanism. The McAfee-mechanism
works as follows. There are m buyers and n sellers. Order the reported

bids and asks:
b(l) > b(g) > .2 b(m) (1.9)

and
C(l) S 6(2) § S C(n) (1.10)

Select k < min{m,n}, such that by > ¢y and b(j11) < c(p41). Define
_ 1
o = 5(bk+1) + Clhg1))-

L. if po € [c(r), b(r)] the all buyers with b; > py and sellers with ¢; < po
trade

54



Quantity

Figure 1.6: Supply-demand curve (McAfee mechanism)

2. otherwise if po ¢ [c(x), b(x)] then only buyers and sellers (1) through
(k-1) trade. Buyers pay by and sellers receive c() and leaving a
surplus of (k —1)(bky — cx))-

The example in Figure 1.4 would yield pg = 0.405 as in Figure 1.6.

Theorem 10. (McAfee, 1992, Theorem 1) Honesty is a dominant strategy
for the McAfee-mechanism

Theorem 11. (McAfee, 1992, Theorem 3) The expected efficiency loss due
to a trade not being executed is E[bgy — cay] 1

In addition there is a utility loss due to earnings from the mechanism,
which increases in the number of trades. McAfee (1992) also investigates the
loss to the market due to the mechanism’s earnings and finds it analytically
difficult. With uniform distributions of costs and values McAfee (1992)
finds using computational experiments, when m = n, that the mechanisms
earnings also increase in the number of agents and already when n = 1000
the loss percentage due to trades not executed is only 0.0002%.

There are also modifications of the McAfee-mechanism that distribute
the mechanism’s earnings, from case 2 of pg, in the market, but still leaves
some potential trades on the table (e.g. Segal-Halevi et al., 2016, and survey
therein). There are also extensions to handle heterogeneous single-unit
items Feng et al. (2012). There is even a continuous on-line truthful double
auction design, but with an efficiency loss of no more than 20% (Wang
et al., 2010).

A continuous double auction has an even richer strategy space and this
game has proven extremely hard to analyse (Rust et al., 1993, p. 158).
In a continuous double auctions buyers and sellers constantly submit their
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offers to the mechanism and a trades occur immediately when the offers
match. Some offers might stay in the market longer, if no suitable submis-
sion arrives from the other side. Rust et al. (1993) describes an experiment
of continuous double auction strategies in the Santa Fe Institute in 1990.
They collected some 30 human defined strategies that competed against
each other. The strategy-set also included simple strategies like truth-
telling and zero-intelligence!, which is essentially playing randomly and is
only constrained by its reservation price. They find that many of these
strategies perform poorly and are easily exploited, although they guarantee
market efficiency. A simple, Kaplan (Algorithm 1 for buying), strategy that
always plays the current market price or reserve price, which ever produces
positive utility, turned out to be the best. This strategy essentially waits
until the market is about to close and then jumps in and makes its bid.

Algorithm 1 Kaplan buy strategy automata

Require: ppaz, Pmin, bide, aske, Pmine, ™
Ensure: bid € {0,R"}
bid =0
if bid. # () then
if ask. # () then
m = min(ask., ™ — 1)
else
m=m—1
end if
if (m > bid,) and ((aske < pmaz and “) > 2% and @skebide < 10%)
or (aske < pmin) or (6t < 7)) then ’
bid = min(ask., m)
end if
end if
return bid

Rust et al. (1993) also conducted an evolutionary game of the strategies,
where survival of a strategy was proportional to their capital share of the
market. They found that the Kaplan strategy dominated in this game as
well. However, after being the only surviving strategy, the profits declined.
Since Kaplan strategy awaits in the market until other strategies do the
negotiating and when these strategies are extinct there is almost no trading.
The Kaplan strategy activates at the end of the trading period and only few
profitable are executed. The leave open the question: are there strategies

'not to be confused with zero-knowledge, a concept from cryptography, a method to
prove that a statement is true, without revealing anything other than the truth-value of
the statement
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and environments that are resistant to exploitation by Kaplan strategies
(Rust et al., 1993)7. This seems even more relevant when looking at the
exploitive nature of high-frequency traders (Budish et al., 2015).

Chen et al. (2009) and Chen and Tai (2010) compare the strategies eval-
uated by Rust et al. (1993) with evolutionary programming to find an even
better strategy using learning with genetic programming. They train an
even better strategy by randomly playing against strategies in the Santa Fe
experiment (Rust et al., 1993, 1994). Chen et al. (2009) uses genetic algo-
rithms to find a function based on trading statistics from previous trading
day, current state of the order-book, timing and agent’s values. Addition-
ally using mathematical functions like addition, multiplication, absolute,
maximum, minimum and if-then rules to combine the statistics. They find
that using minimum bid from previous day is most often used in a profit
maximising strategy. With larger gene population more complex strategies
emerge combining the minimum bid from previous day with highest value
the agent has for an item. The simplicity of this learned strategy is similar
to the Kaplan strategy and can even outperform it.

Zero-intelligence models have been shown to be enough to guarantee
almost 100% efficiency in continuous double auction markets (Gode and
Sunder, 1993a,b). Gode and Sunder (1993b) investigate a synchronized
double auction, where all bids and asks are collected. If highest bid and
lowest ask cross, then they are traded in a binding transaction. Otherwise
new asks and bids are asked from traders. Depending on the number of
extra-marginal traders, traders who would not trade in an ideal truthful
market, the efficiency is between 80%-100% and 95.7% on average as the
ratio of extra-marginal traders goes to infinity. Some 50%-100% efficiency
is achieved already in the first round. Gode and Sunder (1993a) run addi-
tional human and computational experiments with constrained and uncon-
strained zero-intelligence (ZI-U) trades. The ZI-U agents are not anymore
constrained by their reservation value and can bid above or below it, de-
pending if they are buyers or sellers. With the constrained ZI agents they
obtain often 99% efficiency, while with unconstrained only 90%. Moreover
with human experiments the efficiency is also close to 99%. Gode and Sun-
der (1993a,b) results suggest that individual rationality is not required to
the extraction of market surplus.

As a results there has been more works on theoretical statistical models
of continuous double auction (Chiarella and Tori, 2002; Smith et al., 2003;
Daniels et al., 2003) and empirical (Madhavan, 2000; Farmer et al., 2005;
Hasbrouck, 2007) to model aggregate properties like the bid-ask spread,
price impact function, probability of order execution, price diffusion, volatil-
ity etc.
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Almost all models of strategies assume agents know their own inde-
pendent fundamental value v; and based on this determine their pricing
strategy. However many profiting strategies in double auctions do not re-
quire the knowledge of fundamental value. For example assuming that a
price of a security is predicted to increase or decrease an agent can profit
from arbitrage, by buying with a low and selling with a higher price. Thus
the strategy-space of a continuous double auction is inconceivably large.
Thus the price discovery or information dissemination is a critical part in
understanding such a market mechanism. Therefore the human component
is crucial part in understanding financial markets and computational ex-
periments are a useful modern tool to investigate aggregate results from
the behaviour (e.g. Friedman and Rust, 1993; Tesfatsion and Judd, 2006).

Both laboratory experiments and theoretical models show that
agents’ behaviour — and hence market outcomes — are highly sen-
sitive to the assumed information structure (Madhavan, 2000,
p. 207)

The financial market mechanism or market micro-structure design is
more concerned with traders behaviour rather than selecting an optimal
pricing rule. The design components include questions like: Should trades
be mediated by a market maker? How to offer greatest liquidity? How to
minimise trading costs? How traders react to price changes and how are
prices disseminated? See (e.g. Madhavan, 2000) for further survey.

Hommes (2006) reviews some small heterogeneous agent-based models.
The simplest model is with fundamentalist and chartist agents. First type
of agents always have some individual fundamental valuation v; for a good,
as with previously described models, and make bids and asks according
to that value. The other type of agents, chartist, behave by monitoring
the market, they buy when the price increases and sell when the price falls.
This behaviour composition already creates crashes and rapid increases and
declines in stock prices. Additionally (Sornette, 2004, p. 132) the chartists
are relatively successful free riders, not only matching the performance of
fundamentalists in the long run, but outperforming them in the short run.
Similarly to the Kaplan strategy mentioned previously.

Albin and Foley (1992) present a simple benchmark model for a de-
centralised exchange. In this model agents randomly broadcast messages
indicating a willingness to trade. However, there is a cost associated with
the signal. If the buyer’s price is higher than the seller’s asked price then an
exchange occurs. In case of multiple potential trade partners, the agents
meets sequentially in a random order with each partner. A subsequent
trade occurs only if the current holdings permit. The price is determined
by geometric average of the bid and ask prices. The agents know a lot
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Figure 1.7: Exchange market efficiency (Albin and Foley, 1992).

about their potential trade partners: cost of advertising; meeting history;
marginal rates of substitution of neighbours; distribution of goods among
agents. Based on this information they estimate the expected gain from
signalling and signal if there is an expected profit. They observe that with
this model the market efficiency also converges to almost 100% with dif-
ferent messaging costs and number of targeted agents. On Figure 1.7 we
have created the chart based on data from from (Albin and Foley, 1992)
for two combinations of parameter values. In both cases the final allocation
efficiency is very close to 100%. A similar model is, for example, employed
in Beltratti and Margarita (1993).

LeBaron (2006) surveys additional centralised models and learning in a
two-sided exchange. Most models concentrate on investigating some form
of centralised allocation. Most experiments have some centralised market
mechanism and adaptive agents mostly based on genetic algorithms and
occasionally some other learning rule (LeBaron, 2006, p. 1223).

Marks (2006) reviews the main reasons to use computational agent-
based modelling. First the analytical model is intractable. It is hard to
obtain equilibrium solutions to some mechanisms, e.g. double auctions,
due to the dimensionality of the task. Second the equilibrium behaviour is
not relevant for modelling the real world and we are interested in out-of-
equilibrium behaviour. In stock markets there is lot of dynamics in the price
and the market almost never manages to converge. Third agents are not
completely rational, but are bounded and make quick and myopic decisions.
Additionally they learn market conditions and from past behaviour that
guide their future decisions.

Marks (2006) also highlights a general analysis-design framework for
mechanism design. Analysis as surveyed in previous section is important
first step, but computational experiments, simulations, provide light were
the axiomatic approach cast little or none. Marks (2006) concentrates on
evolutionary and learning techniques. First which strategies would survive
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in some environment or which strategies emerge as a result of adaptation?
Both of these are important to understand the effect of picking a par-
ticular design and making sure the mechanism responds well to possible
adaptation. In addition computational experiments are useful to propose
behaviour model in some situation, e.g. in decentralised exchange (Albin
and Foley, 1992) and zero-intelligence (Gode and Sunder, 1993a,b; Farmer
et al., 2005).
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2 Zero-Intelligence in Decentralised Matching

2.1 Introduction

Market economies in general experience large employment fluctuations and
average unemployment rates differ between countries. The underlying job
search and matching theory (the Diamond-Mortensen-Pissarides canonical
framework) provides a conceptual explanation for some aspects of the re-
lationship between vacancies and unemployment known as the Beveridge
curve (Figure 2.1). The core of job-search and matching models is built
on the assumption that the external rate of job creation and destruc-
tion, but also worker reallocation, determine the steady-state equilibrium
of number of unmatched workers and jobs (unassigned agents in our model)
(Mortensen and Pissarides, 1999). Because of search and recruiting costs,
hiring and firing costs and other forms of matching-specific costs, decen-
tralised markets create inefficiencies. This matching technology is implic-
itly characterised by its matching function, which summarises the trading
technology between agents, their actions and choices that eventually bring
them together into productive matches (Petrongolo and Pissarides, 2001).
In the relevant “matching function literature”, it is stressed that such a
theoretical tool is useful because it allows to reduce the complexity of in-
formation imperfection, heterogeneous agents and congestion into a tool-kit
similar to the production function or money demand function. However,
the interactions or matching technology are still rather treated as a black
box.

We open this black box by providing a simple agent-based model of a
decentralized market game in which agents (workers or job seekers) make
proposals to the agents on the other side of the market (firms) in order
to be matched to available positions. In our computational experiments, a
market game is identified by three components: the preference structure of
agents, market conditions, i.e. the relative number of positions and workers,
and the behaviour of agents (workers or firms) based on the information
they have about their own preferences and options in the market.

Search models in labour economics rely on three pillars: the decision
of workers, the decision of firms and wage setting mechanism. We concen-
trate on the first two pillars. Thus, our model belongs to the literature
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Figure 2.1: Beveridge curve based on empirical data

on agent-based partial labour market models (e.g. Neugart and Richiardi,
2012) which use microsimulation to explain stylised facts about the labour
market. These agent based “micro-to-macro” models give insights into
labour markets in the form of partial or general models. In the latter
labour markets are embedded into larger economic models. We are mainly
interested in literature aiming to reproduce the Beveridge curve with search
and coordination in a partial agent-based model. Thus, models (Richiardi,
2004, 2006; Riccetti et al., 2015) aimed at explaining the job search on the
basis of wages or more general market models that interact with the em-
bedded labour market (Dawid et al., 2014; Deissenberg et al., 2008), that
lie outside of our scope.

The partial agent-based models have been developed for replicating
stylised facts from real labour markets, such as the negative-sloped Bev-
eridge curve in the unemployment-vacancy (u, v)-space. Fagiolo et al. (2004),
followed later by Silva et al. (2012), reproduce a Beveridge curve in a partial
agent-based model and come up with a standard explanation that frictions
and the institutional setting affect the position of the curve.

Moreover, giving up the assumption of rational expectations about the
behaviour of agents has produced fruitful insights. Tassier and Menczer
(2008) investigate job-hunting via social networks. They find that random
social networks spread vacancy information better and thus achieve lower
unemployment. Neugart (2004) uses an urn-ball matching model on a small
scale (30-50 agents) and endogenous matching function workers send ap-
plications randomly, however the Beveridge curve is closer to origin than
one would expect in large markets. Similarly Richiardi (2004) employs a
similar model with wages and produces a Beveridge curve further from the
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origin. While Richiardi (2006) models labour supply in a general setting by
a non-equilibrium, adaptive agent-based model of heterogeneous workers
and firms, with on-the-job searching, endogenous entrepreneurial decisions
and endogenous wage and income determination. The latter is able to re-
produce a number of stylized facts generally accepted in labour economics
and industrial organization, including the negative-sloped Beveridge curve.
Also, in this set-up, the matching process is based on random applications
from job seekers for vacancies in the single labour market. Furthermore,
this model allows for on-the-job searching, meaning that assigned agents
can get job offers as well.

There are some other search-and-match models (e.g. Gabriele, 2002;
Deissenberg et al., 2008; Boudreau, 2010). Some of them also produce a
Beveridge curve, but usually investigate different aspect of matching. Often
their aim is to study some other aspects, like stratification and use different
underlying assumptions (e.g. centralised matching or perfect information).

Our modelled agents can be considered myopic — they make proposals
and only accept better proposals without additional strategic thinking. In
our base model, agents apply for a random position and a matching oc-
curs only when both sides find their new partner preferable to their current
match. This is similar to the Zero-Intelligence (ZI) model from financial
markets (Gode and Sunder, 1993a; Chen and Tai, 2010). Our behavioural
models are an extended version of the better response dynamic proposed
by Knuth (1997b) and further analysed by Roth and Vate (1990) and Ack-
ermann et al. (2008).

For comparative purposes, we include behaviours, where agents know
more than in the ZI model, but less than in the better response dynamic.
In our Better proposal model, we assume that agents, e.g. workers, know
of a better match or a position that would also be suitable for them and
thus do not make proposals in a wholly random manner. This can be con-
sidered similar to the Zero-Intelligence Plus model (Chen and Tai, 2010).
In order to further extend the information pool available to the agent, we
use the Blocking proposal model, where agents make proposals to their ran-
dom blocking partner, which is equivalent to the better response dynamic
proposed by Knuth (1997b).

Nevertheless, the agents will not be able to find an equilibrium (sta-
ble) matching in a micro sense. It is rather a steady-state equilibrium in a
macro sense, as the size (number of matched agent-pairs) of the matching
converges. In general, we show how the assumptions about the information
available to agents, the structure of their preferences and market thick-
ness determine the shape and placement of the Beveridge curve. Thus,
our approach not only differs from the framework of Diamond-Mortensen-
Pissarides, but also from recent discussions on job search and matching
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efficiency (Veracierto, 2011; Shimer, 2013; Sahin et al., 2014) where the
persistent empirically observed adverse shifts (outward shifts of the Bev-
eridge curve) have been explained mostly by the deterioration in the ef-
ficiency of the matching technology. We use a partial agent-based model
as classified by Neugart and Richiardi (2012) to develop aggregate regu-
larities from the micro-behaviour of individual agents in order to illustrate
the position of the Beveridge curve in the (u,v)-space. Our model is able
to reproduce some well-known stylised facts from labour market literature
like the negative sloped Beveridge curve. Moreover, we explain the shift of
the Beveridge curve not only as related to information available to players,
but also including a level of heterogeneity of the agents’ preferences. We
model the latter on the basis of the correlation between the preference lists
of agents to indicate their similarity (or common understanding of a good
job position). In addition, we allow for different lengths of the preference
lists. Short lists indicate that there are only few acceptable positions in the
market, i.e. geographical boundaries or asset specificity could determine
the structural characteristics of the market. We show that short lists and
high correlation shift the curve to the upper-right, further from the origin.
In addition, we include a parameter for market thickness — the balance
between market sides — indicating the ratio of positions to workers. Market
thickness models the effect of interactions with other markets through job
creation and destruction rates, i.e. the out-of-equilibrium state of a general
market model. We see that this determines the position on the Beveridge
curve.

In contrast to the decentralised matching in some situations we can em-
ploy a centralised mechanism. Then all the market participants report their
preferences to a central clearing house that can then compute an optimal
matching using for example Gale-Shapley deferred-acceptance algorithm
(Gale and Shapley, 1962). Optimal usually means that the result is the
best possible stable matching for one side of the market as the optimality
can not be guaranteed for both sides. Roth (2008) observed that in some
decentralised situations where there was not a central clearing house in
place, market participants still executed a very similar algorithm as pro-
posed by Gale and Shapley (1962). A major drawback of the execution was
that usually it was time-capped, i.e. at some point the market had to be
closed. This meant that the algorithm execution might not have finished
and resulting matching may not be stable.

In addition to comparing the decentralised behaviours, we include an
idealised deferred-acceptance based clearing house. This helps us to under-
stand how far the decentralised market is from the optimal solution. There
have been a few related works involving agent-based computational experi-
ments in centralised matching markets. Oméro et al. (1997); Dzierzawa and
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Oméro (2000) study the scaling behaviour in the obtained rankings in sta-
ble matchings. Others extend this to more general preferences, by allowing
correlation (Caldarelli et al., 2001; Caldarelli and Capocci, 2001). Zhang
(2001) studies the effect of having limited preference lists used in optimal
stable matchings. This limitation is included to an extent in our decen-
tralised model. Laureti and Zhang (2003) also investigate a decentralised
model, however they assume optimal behaviour from agents compared to
our model, namely that the agents always make the best possible proposals.

Another aspect more studied in centralised deferred-acceptance match-
ing in the ranking of the match. We look at the cost of the decentralised
matching game for agents in terms of median rank from matched agents.
We discover similar results in decentralised markets as have been discovered
for stable matchings — that proposers and agents on the smaller side of the
market obtain better matches (Pittel, 1989; Ashlagi et al., 2013b) — but less
extreme. Surprisingly the noise, ZI, behaviour results in best median rank
among our decentralised behaviours.

We view our decentralised market game as an abstract model which in
addition to studying agent-based interactions in job search and matching
markets can be used in alternative settings, e.g. decentralised school or
university choice. In all these cases, an institution or a central authority —
a clearing house or similar — is missing and agents on both sides constantly
have to react to new proposals and responses.

We continue as follows. In the second and third sections, we intro-
duce the set-up of our model, concentrating on matching behaviour which
includes search and commitment costs as well as the assumptions behind
preference formation. In the fourth section, we describe our parameter se-
lection and initial results of a steady-state. In the fifth section, we look at
when the decentralised matching results in a stable matching. In the sixth
and seventh section, we look at the number of unmatched agents in thick
and thin markets, the latter shows how a Beveridge curve depends on the
search behaviour and the structure of preferences. In the eighth section we
compare the allocated ranks with all the decentralised behaviours to a cen-
tralised clearing-house based on Deferred-Acceptance. Finally, we conclude
by discussing our contribution to the discourse on search and matching
literature.

2.2 Behaviour models

In order to translate the neoclassical matching function into an agent-based
version, we employ the framework offered by Guerrero and Axtell (2011).
This relies on three orders of assumptions, which include rationality, agent
homogeneity and “non-interactivness” in an agent-based model. The cate-
gorisation of the features is presented in Table 2.1.
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Table 2.1: Matching model assumptions

‘ Matching function

Our agent-based model

First order
assumptions

Interaction
mechanism

Implicit (black box)

Explicit (decentralised or
centralised matching)

Second order
assumptions

Rationality

Equilibrium

Agent types

No explicit reference.
Functional form captures

information imperfections

Explicit, exact notion of
how proposals are made
and accepted

Is inefficient due to nega-
tive externalities: conges-
tion, skill mismatch and
locational differences

Is inefficient because of
assumptions about be-
haviour and information.

Representative (homoge-
neous) agent(s), heteroge-
neous sectors

Heterogeneous (different
preferences)

Third order
assumptions

Technological
advances

Supply shocks
or business cy-
cles

Contracts

Transaction
costs

Technological advances in
matching shift “Beveridge
curve” (search is less

costly)

No
vances.
static, do not adapt.

technological  ad-
Preferences are

Affect job creation and
destruction rates, but are
generally treated as an
empirical question

No explicit job creation
and destruction, but the
market thickness, is of in-
terest

A rate of matching and
unmatching

A relationship can be bro-
ken whenever a better
match is found (and the
contract has expired)

A limitation on matching
rate
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Once a better match is
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Beginning with the first order assumptions about the nature of the in-
teraction mechanism, we can see that the literature about the matching
function often treats this procedure as a black box. In an agent-based
model, the interaction is a central question for the investigation. In finan-
cial double-auction markets, Zero-Intelligence (ZI) interaction models have
been fruitful in investigating aggregate market phenomena (e.g. Gode and
Sunder, 1993a; Farmer et al., 2005; Ladley, 2012). We employ a similar
approach for modelling search in the labour market.

Zero-intelligence (Ladley, 2012) is useful because it allows us to decou-
ple the behaviour of an agent from the market structure. Moreover, we are
interested in whether similarly to non-strategic agents (e.g. Farmer et al.,
2005; Gode and Sunder, 1993a), interesting market phenomena can be pro-
duced in the current context. To our knowledge, these types of models have
not been studied for job search. There are macro-level studies that con-
centrate on modelling unemployment and vacancies (e.g. Petrongolo and
Pissarides, 2001; Mortensen and Pissarides, 1999). There also exist agent-
based models of wage equilibrium (e.g. Guerrero and Axtell, 2011) and job
search on social networks Guerrero and Axtell (2013); Zhou et al. (2014a);
Hoefer and Wagner (2012), but there is no simple model for job search.

The labour market consists of two sets of agents — workers and firms (or
positions within a firm). The main behavioural aspect is how the match is
initiated, i.e. the worker-position pair selection. We study models where
the proposing power is either only on one side of the market (A-proposing
models) or where it is proportionally shared (random agent proposing).
In other words, either workers always make proposals, proposals are made
interchangeably, or firms always make proposals, depending on who is con-
sidered side A. We call the non-proposing agent the responding agent. In
the centralised Deferred-Acceptance markets (Gale and Shapley, 1962), the
matching is always optimal and stable for the proposing side, while it is
the worst possible level for the responding side (e.g. Knuth, 1976; Roth and
Sotomayor, 1990). However, in many practical (Roth and Peranson, 1999)
and large markets (Immorlica and Mahdian, 2015), the difference seems to
be small and the effect of market thickness is much greater (Ashlagi et al.,
2013b). The matched rank structure may also affect the size of the match-
ing as proposing probabilities are different under random agent proposing.

In fact, we investigate several models (Table 2.2), where a second-order
assumption of Zero-Intelligence (ZI) is a characteristic of the base model.
The ZI model is called the Noise proposal model wherein two random
agents, one from each side, are selected, but a matching transaction occurs
only when the new match is an improvement over their current matches.
Similarly, in financial markets a deal is only accepted when the offered price
is above the reserve price for both sides, i.e. the buyer and the seller, oth-
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erwise the price is offered at random. Thus, in our mechanism, there are
only pairwise interactions and a transaction occurs when the reserve offer
is met on both sides.

Table 2.2: Explored behaviour models

Interaction, proposer (1st order)
Rationality (2nd order) Random side A-proposing
Noise proposal Noise Proposal Noise Proposal A
Better proposal Better Proposal Better Proposal A
Blocking proposal Blocking Proposal Blocking Proposal A

In the first Zero-Intelligence Plus (ZIP) behaviour, which is the Bet-
ter proposal model, agents only make proposals to a better match, i.e. a
position higher on their preference list than their current (reserve) match.
Thus, the proposing side does not even consider non-acceptable matches.
In contrast, in the Noise proposal model an offer is made to a random agent
on the preference list, and might actually not be acceptable to the proposer.
This is learned in the transaction. In other words, in the Better proposal
model, even agents with a current high ranking match have a high proba-
bility of a new match, which only depends on the responding side finding it
acceptable. On the other hand, in the Noise proposal model a transaction
probability would also be lower for proposing agents, if their current match
is high on their preference list.

The second ZIP behaviour is the Blocking proposal model. A blocking
pair is formed by two agents from the opposite sides of the market who,
if they met, would prefer to be matched to each other. Here agents only
make a proposal to other agents when they know it would be accepted by
the other party, i.e. the blocking pair, in the current state of the market.
The match can still be broken in the future if either of the agents finds a
more preferred partner.

Although we investigate multiple behaviour models of the proposing
agents, we always assume that the responder is a ZI agent. He only and
always accepts proposals made by agents higher than the current match
on his preference list. In addition, the existence of an information aggre-
gating institution is implicitly assumed in Better and Blocking proposal
behaviour. For example finding a potential blocking pair in the Blocking
proposal model can be thought of as being supported by an institution.

We are only interested in studying the aggregate results of the search
behaviour, therefore we simplify most of the third-order assumptions. The
preferences of the agents are fixed, so they do not adapt to market con-
ditions during the search. There is also no creation or destruction rate of
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new agents or positions, nor any external shocks that might trigger such de-
structions or creations. We do, however, explicitly model market thickness.
The market is considered thick when there is exactly the same number of
agents on both sides, so all the agents can potentially be matched. If there
are more agents on one side, the market will not be thick and there will
always be some agents unassigned. In addition, thickness has an impact on
the search outcome, as agents from the smaller side have more options to
choose from. Thickness is also an indicator of disequilibrium, as the num-
ber of jobs is not equal to the number of workers, characterising exogenous
dynamics of job creation, destruction, etc.

Finally, in our main experiments there are no limitations on matching
with a more preferred partner, i.e. no commitments to contracts or any
transaction costs for changing a match. However, in Section 2.7.3 we show
the effect of frictions of enforcing different types of obstacles, including
contractual ones, on re-matching.

More formally, we employ a model similar to that used in modelling
centralised two-sided matching markets (e.g. Roth, 2008). There is a set
A ={ay,...,an, } of agents on one side and a set B = {b1, ..., by, } of agents
on the other side. The number of agents on both sides can differ (ng # np)
depending on market thickness. Each agent a; from A has a strict preference
relation >, over agents in B, and similarly for b; € B there is a preference
relation -p, over agents in A. A matching p is a mapping from AU B to
itself, so that every a; € A, is matched to p(a;) € BU {a;}, and similarly
for b; € B, u(bj) € AU{b;}. When an agent is matched to itself, p(a;) = a;
or 1(bj) = b; respectively indicates that they are in fact unmatched. Being
matched to oneself is the least preferred option for all the agents. Agents
would still find only the acceptable positions in their preference list, which
might not contain all positions. Similarly for the position, only some agents
might be acceptable. In addition, for every a;, b; € AUB, n(a;) = b; implies
1u(bj) = ai.

A matching is unstable if there are at least two agents a; and b; from
opposite sides of the market so that b; =, u(a;) and a; =y, p(b;) — a
blocking pair. A matching is stable, if it is not unstable. In Table 2.3 we
have listed the notation for quick reference.

With the notation in Table 2.3 we can present a General Proposal Dy-
namic in Algorithm 2. The SelectProposer() and SelectResponder() pro-
cedures are distinct for each of the described models in Table 2.2. The
SelectProposer() selects a random agent from set AU B or A depending on
whether the behaviour model is Random side or A-proposing. The Selec-
tResponder() selects an agent from the preferences of the proposer, and the
actual selection depends on whether the behavioural model is the Random,
Better or Blocking proposal.
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Table 2.3: Notation

Symbol ‘ Description

A Preferences of agents on side A

B Preferences of agents on side B

a; Preference profile for agent ¢, a; € A

b; Preference profile for agent j, b; € B

na Number of agents on side A

ng Number of agents on side B

0 Market thickness § = 72

k Length of preference lists

c Correlation of preferences

T Re-matching friction

" Matching

S Size of matching, counted in pairs of agents
U Unassigned percentage on side A, u =1 — %
v Unassigned percentage on side B, v =1 — 2=

Matched rank of agent ¢ in matching p

=<
—
=
—
.
~—
~—

T Median matched rank of agents in A

7 Median matched rank of agents in B

Di Number of blocking pairs for agent ¢

Di Number of blocking pairs with unmatched agents for agent i
Di Number of blocking pairs with matched agents for agent i
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Algorithm 2 General Proposal Dynamic

Require: A, B, i
Ensure: p is a matching
p < Select Proposer(A, B)
my < p(p)
r < Select Responder(p)
my < pu(r)
if p >, m, and r >, m, then
p(mp) < myp, p(my) < m,
u(r) <= p, p(p) <
end if
return pu

We study the macro-level convergence properties of the search behaviour.
On an individual agent level, the market needs not to be in equilibrium.
There have been studies on the equilibrium of decentralised matching pro-
cesses. Niederle and Yariv (2009) study such applications where firms and
workers have aligned preferences and show the conditions for having a sta-
ble matching in equilibrium. Haeringer and Wooders (2011) examine equi-
librium behaviour with slightly different models, where agents cannot be
re-matched to a previously rejected partner, but their model is otherwise
similar to ours as agents have to respond immediately. Diamantoudi et al.
(2015) look at stability when agents make a commitment to a partner, which
can either be only for a certain period, or an infinite commitment so that
participants exit the market, or only a one-sided commitment. They show
that having a requirement for firms to commit to an employee can result
in unstable matchings in equilibrium. In our models we mostly concen-
trate at the no-commitment scenario, except in the impediments scenario.
Pais (2008) analyses the equilibrium with limited information about prefer-
ences. Eriksson and Haggstrom (2007) also study decentralised matching,
but they do not make any underlying assumptions about how the matching
is reached. Instead, they measure the degree of instability in some random
matchings. However, if some decentralised matching model is assumed,
the resulting matching would not be a uniform selection of all the possible
matchings.

In addition there have been experimental studies (Echenique and Wil-
son, 2009; Echenique and Yariv, 2013) about decentralised matching mar-
kets with human subjects which show that stability tends to be a prevalent
outcome, but is not always guaranteed. The interesting aspect in those
cases is human behaviour, which usually also restricts the size of the exper-
iments, which tend to be small — 10-20 participants. Zhou et al. (2014b) use
real-world data from small and large on-line matching markets and study
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the statistical regularities of those matchings, mainly how the size of the
markets relates to the size of the matching. This is also what we are inter-
ested in. Unfortunately they do not count the size of the two sides of the
markets, but only the overall size.

2.3 Preference generation

Nevertheless, we look at heterogeneous agents with various degrees of cor-
relation in their preferences and the availability of matches. We model a
situation where the preferences of the agents are all idiosyncratic (effectively
random) and agents find all partners acceptable. Yet, we also look at some
structural constraints. Firstly, we introduce limited preference lists indicat-
ing that an agent finds only a fraction of the partners acceptable. Second,
preference lists are somewhat correlated, or in extreme cases, preferences
are exactly the same, indicating common tastes.

In the real world, correlated preferences show ”popular tastes”, e.g.
all agents have similar preferences for high paying jobs or are interested
in simple assignments, etc. The length of the preference list, however,
indicates the probability of an agent being found unacceptable, even if a
certain agent would be the only candidate. So a person without a pilot’s
licence would never be employed as a pilot. Thus, shorter preference lists
imply that not all agents are acceptable to a particular position.

We assume that agents have strict preferences for agents (workers or
positions) from the opposite side of the market. In the simplest case pref-
erences are random, i.e. each agent has a totally idiosyncratic preference
ordering. In general we can think of more structured preferences in a soci-
ety, parametrised by the length of the preference list (k) and the correlation
between the preference lists (¢). In our experiments, the preference list limit
k is set to be the same for all agents. Correlated preferences are from a
global preference ordering. The degree of correlation is also the same for
all agents, but the preference ordering is not necessarily the same when
comparing two agents.

We generate the preferences using algorithm 3 with parameters k, ¢ and
n. This algorithm is a modified version of a random permutation algorithm
from Knuth (1997a) to generate correlated preferences with parameter c.
The algorithm starts with a master list of n numbers (agents). Then it
iterates the list from beginning to end, each time at position j randomly
selecting a position ¢ € [j + 1,n] to exchange values with. The correlation
parameter c states how biased the randomly selected position is, higher
values indicate that the exchange position is selected closer to the cur-
rent position j. With ¢ = 0.0 the selection is uniformly probable over all
positions, until finally at ¢ = 1 the exchange position is always the active
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Algorithm 3 Correlated permutation
Require: n,k € [0,1],c € [0, 1]
Ensure: p is a permutation of unique numbers
p+—1,23,..,n, 70,1l k-n
while j <! do
r <= [0.0,1.0] uniform random number between 0 and 1
g n—(n—j) r'=
t 4 pg, Pg < Pj, Pj <
jg+1
end while
return {p1,p2,....,p}
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Figure 2.2: Preference probabilities with degrees of correlation

position and all the generated lists are exactly the same. There is one global
ordering of agents for each side of the market that is used for generating
correlated preferences.

The power of uniform distribution #/'~¢ used to randomly select the
exchange positions while generating the correlated preference list is pro-
portional to the Beta distribution with parameters Beta(ﬁ, 1) ~ Ut
In Figure 2.2, we see the probabilities of having a particular value at some
position in a list of 10 values between 0 and 9. Each box is a position in a
list and displays the probability of having a certain value in that position.
We see that when ¢ = 1.0 then all positions have a 100% probability of
having the same value and when ¢ = 0.0 then all values in any position are
uniformly probable.

In Figure 2.3, we compute for comparison the mean Spearman p and
Kendall 7 correlation coefficients over all the preference lists. We compute
two types of means over the correlation coeflicients, first compared to the
initial global ordering and then a mean over pairwise correlations among
a random sample of preference lists. We see that the pairwise means are
always below when compared to the correlation with the global ordering.
This is because although all the preferences are a similar distance from the
global list, the generated lists might still be far from each other, i.e. have a
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lower correlation. That is the case with small degrees of correlation. Still,
when the correlation ¢ = 1.0 all the lists are exactly the same and the p
and 7 values are also 1.0.

In reality, the limit of the preference list might be due to skill mismatch
in position requirements and for agents based on utility. Similar limitations
on the length of preferences have been studied in Zhang (2001) and Laureti
and Zhang (2003). We consider the preferences to be “known” to the agents
only in terms of the behaviour model employed. So, for example, in the
Better proposal model, agents would select a random proposal that is an
improvement over their current match, but it might not be their most
preferred match.

We do not study societies where, in general, positions and workers might
have aligned preferences as in Niederle and Yariv (2009). High correlations
between preference lists are usually driven by people receiving similar in-
formation about alternatives and also due to similar value systems. It is
observed by Roth and Peranson (1999) that high correlations limit the
size of the core of stable matchings. Certain aspects of correlation have
been investigated by Biré and Norman (2012) that looks at fully correlated
preference lists by varying the length of preference lists and its effect on
convergence to stability.

There have been additional studies on the effect of correlation. Gen-
erally, correlation is defined as the agent’s utility function in the form
Uq, (bj) = B - &(bj) + &a, (bj) (Ashlagi et al., 2013a; Caldarelli and Capocci,
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2001; Boudreau and Knoblauch, 2010) and then sorted to obtain a prefer-
ence ordering. The parameter § is the correlation parameter and in case
of B = 0 we would recover the uncorrelated preferences. The {(n;) is the
global popularity of the agent b; and &, (b;) is the specific utility of agent
a; for agent b;. It should be noted that 8 can be arbitrarily large, thus it
is hard to have fully correlated preference lists. (Boudreau and Knoblauch
(2010)) define a similarity measure for preference lists after generation, but
usually the results are still far from fully correlated (¢ = 1.0) preferences.

2.4 Computational experiments and convergence

All our experiments are carried out with ny = |A| = 1000 agents. We vary
the market thickness 6 = Z—i € [0.5,2.0], which varies in the number of
agents on side B np = |A| € [500,2000]. We do 300,000 matches. Figure
2.4 shows that with all the behaviour models and various values of market
thickness, the matching size converges to a steady-state. This does not
mean that there are no changes in the matching. Individual agents still
change their matches whenever their behavioural mechanism conditions are
met. In the experiments, the result was almost never a stable matching
without blocking pairs. Therefore, small fluctuations always occur in the
matching, but Figure 2.4 demonstrates that this does not have a significant
effect on the macro-level of matching.

2.5 Stability of a matching

Ackermann et al. (2008) showed that the lower bound for convergence time
to stability is exponential 22" with respect to n being the number of
agents on one side of a thick ( = 1.0) market and with full preference lists.
This indicates that with large n stability becomes nearly impossible. Our
decentralised behaviour models operate by satisfying blocking pairs in each
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transaction, otherwise the proposal is rejected. These are not guaranteed
to lead to stability, as some blocking pairs are satisfied some new blocking
pairs are created. Furthermore it has been shown that by satisfying blocking
pairs in our Blocking Proposal behaviour the matching may cycle (Knuth,
1997b; Ackermann et al., 2008).

The results of probability of stability with ng = np = 100 and varying
¢ and k is presented in Figure 2.5. Similar results are reported by Bird
and Norman (2012), where they look at k- n < 8. We observe that the
behaviours do not always converge to a stable matching when £ > 0.20,
that is there are more than 19 candidates on agents’ preference lists. This
is in-line with the exponential convergence as 2 ~ 500000 expectation of
potential proposals that are processed in our experiments.

¢ (Correlation)

5 1000
K (Limit)

Figure 2.5: Probability of a stable matching with ng = npg = 100

However, when we enlarge the number of agents to ng = np = 1000
we see in Figure 2.6 that stability is very rare, as there are always blocking
pairs. Stability arises only when preference lists are very short (k < 0.10)
or when ¢ = 1. The latter only occurs in Blocking proposal behaviours.
Roth and Vate (1990) showed that by randomly satisfying blocking pairs,
the matching eventually reaches stability with probability one. Although,
there may be cycles in satisfying the blocking pairs, there is at least one
path, sequence of such pairs, that always end up in a stable matching.
Apparently when preference lists are short or very correlated, the possibility
of a cycle in satisfying blocking pairs is small, thus we converge to a stable
matching faster than with longer or less correlated preferences. Also the
situation when preferences are fully correlated, ¢ = 1.0, is special as it
allows better coordination in a decentralised market. In Figure 2.5 we saw
that fully correlated preference lists can be must longer as still have near
100% probability of a stable matching.

As stable matchings are rare with 1000 agents on both sides, we turn our
attention the number of blocking pairs. In Figure 2.6 we show the number
of blocking pairs by k and c¢. We see that the length of the preference list
(k) has the greatest effect.
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Figure 2.6: Average number of blocking pairs in a matching with
nag = ng = 1000

If we look at the probability of having a random pair of agents a blocking
pair, we see that this is almost constant in each of the mechanisms. The
probability of a blocking pair is Pr(p) = m. Fitting the probability
to a linear model in the form (2.1), we obtain the results in Table 2.4.

Pr(plc) = B1 + B2lc = 0.9] + ... + Bi1[ec = 0.0] (2.1)

We see that with Noise models ((1), (2)) the blocking pair probability
is about Pr(p) ~ 20%, slightly decreases with ¢, but is around 11% — 12%
when ¢ = 0.0. For Better proposal models ((3), (4)) the Pr(p) =~ 30%
and slightly higher 33% only for ¢ = 0.9 in Better Proposal (4). How-
ever in Better Proposal A behaviour the probability of a blocking pair
decreases slightly with correlation decreasing, indicating some coordinating
effect from just A-side proposing. For Best Proposal behaviour model (5)
the fit when ¢ = 1.0 is lowest compared to smaller correlation, but then
increases significantly when ¢ ~ 0.9 to 35% and finally settles to about
30%. Finally with Blocking Proposal A (6) blocking pairs probability set-
tles to about 27%, that is lower compared to just Blocking Proposal, again
indicating some coordinating effect from just A-side proposing.

To summarise, the noisy (ZI), models we have the lowest probability for
blocking pairs compared to more sophisticated behaviours. Furthermore,
the more sophisticated behaviour often benefit from having the proposing
side fixed as the proportion of blocking pairs slightly is lower.

\\\\\\\\\\\
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Figure 2.7: Blocking pairs in a matching with ¢ = 0.0 and & = 100%

7



Table 2.4:

Probability of a blocking pair

Pr(p|c) - 100%
(1) (2) (3) (4) (5) (6)
c=1.0 ] 19.690"**  19.641***  30.022***  30.558***  24.683*** 32.975***
(0.042) (0.040) (0.067) (0.068) (0.102) (0.080)
c=10.9 | =5.759"* —5.648***  3.362"** 0.651***  10.110*** —0.148
(0.062)  (0.060)  (0.099)  (0.101)  (0.151)  (0.118)
c=0.8 | =7.513** —7.455** 1915  —1.172"*  T7.751*"*  —2.597***
(0.059)  (0.057)  (0.095)  (0.096)  (0.145)  (0.113)
c=0.7 | —8.488** —8.266™*  0.629*** = —2.275"*  £6.292*"* = —4.205"**
(0.060) (0.058) (0.096) (0.097) (0.146) (0.115)
c=0.6 | —8.531** —8.440*** 0.211** —2.777**  5.789***  —4 748
(0.062)  (0.060)  (0.099)  (0.101)  (0.151)  (0.118)
c=0.5| —8.640"* —8.561** —0.288*** —3.062***  5.244*** = —5.214***
(0.062) (0.059) (0.099) (0.100) (0.150) (0.118)
c=0.4 | —8.445"* —8.454**  —0.162* —3.272***  5.293*"*  —5.443***
(0.060)  (0.058)  (0.096)  (0.098)  (0.147)  (0.115)
c=0.3 | —8.289** —8.421** —0.300"** —3.337"**  5.260*"*  —5.592***
(0.059) (0.057) (0.094) (0.096) (0.143) (0.113)
c=0.2 | —=8330"* —8.264™* —0.225"* —3.611"**  4.954***  —5.884***
(0.061)  (0.059)  (0.098)  (0.100)  (0.149)  (0.117)
c=0.1] —8319** —8.234** —0.207** —3.526™**  5.183*"*  —b.792***
(0.059)  (0.057)  (0.094)  (0.096)  (0.143)  (0.113)
c=0.0 | —8.348** —8.260*** —0.238** —3.412***  5.086*"*  —5.904***
(0.060)  (0.057)  (0.095)  (0.097)  (0.146)  (0.114)
Note: *p<0.1; **p<0.05; **p<0.01
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However, the market thickness has some effect on the probability of
blocking pairs. Figure 2.7 shows how the probability of a blocking pair is
impacted by the thickness parameter 6. First we observe that the prob-
ability of a blocking pair is always highest when the market is thickest,
that is # = 1. Also the effect is symmetrical with respect to thickness as
Pr(pl6 = 0.5) =~ Pr(p|6 = 2.0), which is expected and the same holds
true for models where the agents from A-side are always in the proposers
role. Moreover, the noisy model is again superior to other models, as it has
always a lower probability for a blocking pair.

The Figure 2.7 indicates that the number of blocking is bounded by the
number of agent pairs, as nA’an — const.. Khuller et al. (1994) show that
there is a lower bound of €2(n?) for on-line randomised matchings. However,
we see that the constant is important, as the Noise Proposal mechanisms
result about three time lower number of blocking pairs.

2.6 Unassigned agents in a thick market

2.6.1 Analysis of convergence conditions

Our probabilistic analysis considers the simpler situation where the market
is thick (# = 1.0), all agents have full (k = 1.0) and uncorrelated preference
lists (¢ = 0.0). With limited preference lists, the analysis would not hold
and would need to be augmented with probabilities of having certain agents
on a preference list. Similarly, with correlation, we would need to assume
some probability of having certain agents higher on the preference lists.
Calculations are much more simplified, when we can assume this to be of
uniform probability for all the relevant agents.

There are four types of events that can occur in all of the decentralised
matching behaviour models:

e1 Two previously unmatched agents are matched. The size of the
matched population increases by one on both sides and nobody be-
comes unmatched. The net change in the size of the matching will be
one.

e2, e3 One unmatched agent (either from A or B) is matched to another
matched agent. The matched population increases by one, but one
previously matched agent now becomes unmatched due to the divorce
of the already matched agent. The net change in the matching size
will be zero.

e4 Two already matched agents are matched to each other and conse-
quently two divorces occur. The net change in the size of the matching
will be minus one.
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We are interested in understanding the convergence of the size of the
matching. Since for events e and e3 the net change in the matching is zero,
we are not interested in those events. The size of the matching changes only
with the events e; and e4 and has converged when As = P(e;) — P(e4) —
0. We analyse the probabilities of the events e; and e4 for all of the six
decentralised behaviour models. This is similar to the model in (Mortensen
and Pissarides, 1999, p. 1185). However, Mortensen and Pissarides (1999)
analyse the model on a macroscopic level with transition probabilities on
a Markov chain. Yet, we analyse the model on an agent level, where the
transition probabilities depend on the states of the agents.

Noise Proposal and Noise Proposal A Whenever two unmatched
agents meet, they always prefer to be matched rather than unmatched,
given our assumptions about preferences. Hence, the probability for event
e1 is the probability for two unmatched agents to meet as in (2.2).

Pler) = (1 - n‘l) <1 - nSB) (2.2)

The probability of event e4 is selecting two matched agents that prefer
to be matched. This firstly depends on selecting two matched agents, one
from A and the other from B. Secondly, the selected agents would both
have to be higher on each other’s preference lists than their current match.
The latter is an average over all the matched agents. This is summarised
in (2.3).

Plea) = (S> <5> LY POl > 0) PX =)
i€s,i€EB
LS pey >0 Pix=0)| @3

S
1€5,i€A

Since the probability of selecting an agent in a particular position is
uniform, P(X = z) = %, and the number of agents n is either ny or np,
depending on which side we are looking at, we can simplify (2.3), which
results in (2.4).

- (3) (5)

®w | =

Y Pr(uli) > )
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Better proposal A The probability of event e is the same as with Noise
behaviour. The probability that an unmatched agent a; is selected from A
and then the probability that the agent will select an unmatched agent is
b; € B. Since agent a; has a full preference list, the selection is made from
the entire set B. This results in the probability of two unmatched agents
being selected, as expressed in Equation (2.5).

Pler) = (1 - T;) <1 - 7;) (2.5)

To find the probability of event e4 of Better proposal A, we first have to
take the probability of selecting a matched agent from A. Then the selected
agent a; will randomly select an agent from the set of better matches on
its preference list. The matching is successful only if the selected agent
from B side finds a; acceptable as well. This means, by definition, that the
two agents have to form a blocking pair. With p; we count the number
of blocking pairs with another matched agent from B for agent a;. This
results in probability for event e4 as in Equation 2.6.

Better proposal When an agent from either side can act as a proposer,
we only need to weigh the proposer’s selection probabilities by the size of
the respective agent-sets. For the probability of event eq, this would result
in Equation (2.7), which simplifies to the same result as (2.5).

@: na —|— nB ]__i 1_i —
nA+np na+npg nA np

(1 - n‘l) <1 - nSB) (2.7)

The probability of event e4 for Better proposal behaviour is again similar
to the Better proposal A. We first take the probability of selecting a matched
agent from either from A or B. If the proposing agent is selected, then
selecting an accepting responder has the same probability as (2.6), but
over all of the agents in A U B, which results in total probability as in
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Equation (2.8).
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Blocking proposal A The probability of event e; depends on selecting
an unmatched agent a; from A and then agent a; selecting an unmatched
agent from among its blocking pairs. On average, this results in probability
as in Equation (2.9). When all agents have full preference lists, we could
simplify even further with p; = np — s as all unmatched B agents would be
blocking pairs for any unmatched A agent.

L ] Err i S B ST
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Similarly the probability of event e4 depends on selecting a matched
agent a; € A and this agent a; selecting a blocking pair with a matched
agent from among all blocking pairs, including the ones with and unmatched
agent. This results in probability as in Equation (2.10).

Pao-()s T 2= =2 e

n
iepicA pi A jepicA pi

Blocking proposal Similarly to the Better proposal behaviour, we need
to weigh the probabilities in Equations (2.9) and (2.10) against the proba-
bilities of selecting an agent either from A or B. This results in probabilities
as in Equations (2.11) and (2.12) for e; and ey respectively.
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Figure 2.8: Comparison of expected and experimental probabilities of

event e

P(es) -P(es)

0.001

0.000

-0.001

Theoretical and simulation difference

T

Rationality

Better Proposal Better Proposal A Blocking ProposaBlocking Proposal A Noise Proposal Noise Proposal A

Figure 2.9: Comparison of expected and experimental probabilities of

event ey

Pleq) =

nA

s 1

nA-+ngnas

1

bi

STRIY.Y pi

B Y
na+ng icn Pi

np

s 1

nAa-+ngngs

i _
Pi

1ENIEB

(2.12)

In Figures 2.8 and 2.9, we compare the results of the probabﬂisti/c\match—
ing estimations from the structural properties of the matchings P(-) from
the specified equations and actual observed probabilities P(-) from compu-
tational experiments. The figures show the average difference in these prob-
abilities with 99% confidence bounds on normal distributions. We see that
with all the behaviours, the statistical difference between the estimated and
observed probabilities is close to zero and is always within the 99% bound
(Figure 2.8 and 2.9). This indicates that the structural properties of the
matchings are as expected.

83



Simulation convergence
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Figure 2.10: Statistical difference in P(e;) and P(e4)

In Figure 2.10 we investigate the convergence of the matching process.
The process converges when As = P(e1) — P(e4) — 0. This figure demon-
strates that the difference P(e;) — P(e4) & 0 is statistically within the 99%
confidence bound. This is not to say that the matching freezes. There are
still new matches made as well as broken. Rather the statistical properties
of the matching, in terms of size, distribution of obtained rank, and the
distributions of blocking pairs, converge and become stationary.

2.6.2 Structured preferences

Now we vary the correlation and the length of preferences, but still keep the
market thick, that is # = 1.0. As previously in Figure 2.6 we saw that only
with very short preference lists , £k = 0.02, the decentralised behaviours
lead to stable matchings. In Figure 2.11 we show the unassigned agents in
those matchings. Due to small k£ there are many unmatched agents, about
70% to 90%, even when these preferences are uncorrelated (¢ = 0.0).

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww A Better Proposal Betir Proposal A Blocking Proposal Blosking Proposal A

250-

0% ok o 100000 0% ok 075 100000 0% 0B 075 100
¢ (Correlation)

Figure 2.11: Unassigned agents in a stable matching 6 = 1.0

However, when k is increased, the probability of being unassigned de-
creases dramatically (Figure 2.12), to around 20%, when preferences are
uncorrelated. Then again these matchings are unstable and there is poten-
tially a significant amount of re-matches.

Additionally, in Figure 2.11, we see that the size of all the stable match-
ings is the same, even with the optimal Deferred-Acceptance. This shown
always be the case in the “Rural Hospitals” theorem reviewed previously.
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Figure 2.12: Unassigned agents in an unstable matching § = 1.0

However, in the case when the decentralised behaviour find unstable match-
ings, we see that the optimal matching would often be an improvement, at
least when the preferences are moderately correlated, ¢ < 0.5. Noise pro-
posal does slightly better, than other decentralised behaviours, but mostly
only in the moderate correlation region. Once the preference lists are short
and highly correlated, there is always large percentage of agent unassigned,
even in the optimal stable matching.

2.7 Unassigned agents in a thin market — the Beveridge curve

2.7.1 Beveridge curve and the movement along the curve

We look at the Beveridge curve without any structure in preferences, that
is ¢ = 0.0 and k£ = 1.0. Figure 2.13 contains data points for all six of the
behaviours.

The thickness () of the market sides determines where on the Beveridge
curve the steady-state of the matching is situated. In Figure 2.13 the lines
represent some examples of market thickness. When the market is thick,
i.e. we have equal number of agents on both sides (6 = 1.00), the result
will lie on the 45 degree line. When the market is biased toward one or
the other side, we move along the Beveridge curve to the upper left or
lower right. Different values for thickness can be considered the effects of
outside influences, e.g. economic state that influence the job destruction
and creation rates. So the curve is the result of out-of-equilibrium state of
the wider marker.

It appears that the best and largest matching outcome is obtained
when agents behave randomly in the market, as in the two Noise pro-
posal behaviours. Moreover, it is not relevant how the proposing power
is distributed, the results are the same on average. Strangely enough, the
size of the matching is much smaller when agents exhibit more intelligent
behaviour, by proposing only to more preferred agents (Better proposing
behaviours) or only to agents they know will accept (Blocking proposing
behaviours). This is most likely the result of a matching transaction being
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Beveridge curves (k=1.0, c=0.0)
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Figure 2.13: Beveridge curves

much more likely in the latter two cases than with noisy proposals. Thus
a lower steady-state is reached due to agents making many more swaps in
their partner.

It is also clear that in any of the mechanisms, which side proposes
selection does not affect the size of the match. This might be an indication
of the fact that being a proposer is not that relevant in large markets, as
has been also discovered in large centralised matching markets (Roth and
Peranson, 1999; Immorlica and Mahdian, 2015).

Depending on market thickness, the ratio of free agents is higher on
the larger side on the market. In case of Better and Blocking response
behaviours, the change in free agents depends linearly on market thickness.
In the case of the zero-intelligence Noise proposing behaviour, the relation
of the number of free agents with thickness is not linear, but is akin to
a square root function. So the size of the matching increases faster with
Noise proposing behaviour when the market is becoming thicker (6 — 1.00)
compared to other behaviours.

2.7.2 Shifts in the Beveridge curve

The Beveridge curve is concerned with the size of the matching. Most em-
pirical curves show a relationship between unemployment and vacancies,
and it is never the case that neither of them is zero. This is usually at-
tributed to the structural properties of preferences — some workers are not
suitable for some jobs. We observe a similar effect of having structure in
preferences. In addition, we show that the shift can also be the effect of
search behaviour.
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It has been long assumed that shifts of the Beveridge curve are due
to the structure of preferences in the labour market (Abraham and Katz,
1986; Blanchard et al., 1989; Mortensen and Pissarides, 1999; Sahin et al.,
2014): namely, where workers can and would like to work, and similarly
who the employers would like to hire. If agents are low on the preference
lists for every position or not on the list at all, it is very hard for them to
find a match.

We model the preferences of the agents in terms of correlation ¢ in a
society and the length k of the preference lists. Both these factors play
a significant role in how good, large, the match is. In the experiments in
Figures 2.14 and 2.15, we vary c and k simultaneously to understand their
interaction effects. If preference lists are very correlated (Figure 2.14), the
matching tends to be small, which is also the case when the lists are short
(Figure 2.15). However, it also appears that either of these features can
determine the location of the Beveridge curve on its own. Conversely to the
trend even when the lists are short, but with low correlation, large matches
can result. This can also occur when the lists are long and correlation is
high. Naturally, with long lists and low correlation, the matching is the
largest. So the relationship in preference list parameters (¢ and k) and the
size of the matching is not straightforward.

Better Proposal A Blocking Proposal Blocking Proposal A
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u

Figure 2.14: Beveridge curve and correlation in preferences ¢
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Figure 2.15: Beveridge curve and length of preferences k

To simplify thinking about the structural properties of the preferences
of agents, we use the maximum potential matching to determine the effect
of correlations and limited lists on a matching. The maximum potential
matching is computed using the Hopcroft-Karp algorithm (e.g. Cormen
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et al.,, 2004, p. 696) in networkX library (Hagberg et al., 2008). This
matching is then compared to the maximum matching with no correlations
or limits on preferences and this comes down to the number of agents in
the smaller side of the market. Thus, when n4 = 1000 and np = 500, the
maximum matching can be s, = 500. However, this can never be obtained
because the preferences are somewhat structured. The maximum matching
returns the size that can be obtained given the preference structure — the
potential size p,,. Figure 2.16 looks at the effect of ¢ = p ™~ on the Beveridge
curve. We see that ¢ is close to 1 when we find a large matching with ZI
and close to 0 when the matching with ZI is small. The latter may reflect
certain skill mismatches in the market similarly to the established stylised
facts in macroeconomic literature.
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Figure 2.16: Beveridge curve and maximum potential matching

2.7.3 Effect of a re-matching friction

The main effect of the behaviours on the size of the matching originates
from the differences in probabilities that a transaction ends with a successful
re-matching. In the Noise proposal behaviour, a pair of agents is randomly
selected, whereas in Better and Blocking proposal behaviours, only the
agent on one side is randomly selected. In the latter two, the randomly
selected agent only makes proposals that they already find acceptable. ZI-
agents make proposals to random agents from the other side of the market
and learn its ranking during the transaction. Thus, they might eventually
reject the match.

Therefore, to disentangle the effect of the Noise proposal behaviour in
a comparative context, we tweak our model slightly by adding an friction
timer 7 to an individual match. This would lower the probability of a
transaction to result in a successful rematch. We investigate the friction
effect with preferences, where ¢ = 0.0 and & = 100%. A new matching is
only accepted, when the timer condition is satisfied for both agents forming
a match. We implement three types of friction timers:

1. After making a new match lazy agents wait for 7 iterations before
accepting a new offer;
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2. After making a new match patient agents wait for 7 proposals before
accepting a new offer;

3. After making a new match greedy agents accept only matches that
are 7 positions higher than their current match.

In Figures 2.17, 2.18 and 2.19 we show the results of lazy, patient and
greedy agents respectively. In our experiments the friction is fixed for all
agents. We see that by introducing frictions to agents before allowing them
to be re-matched, the resulting match becomes larger and the Beveridge
curve shifts closer to the origin. This is true for all our modelled behaviours.
However, the effect is significantly greater for Better and Blocking proposal
behaviours with lazy and patient agents (Figures 2.17 and 2.18). This is
caused by the initial lower re-matching probability already present in fric-
tionless Noise proposal behaviour. Moreover, the types of frictions cause
some overlap. In frictionless Better and Blocking proposal behaviour, once
a pair of agents was selected, the re-matching probability was higher com-
pared to the Noise proposal, so the effect of the friction is also greater.
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Figure 2.17: Beveridge curve of lazy agents
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Figure 2.18: Beveridge curve of patient agents
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Figure 2.19: Beveridge curve of greedy agents
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For lazy and patient agents, the effects of the friction are similar. For a
patient agent to re-match, they would have to be selected on 7 occasions,
whereas a lazy agent would have to wait for 7 iterations. If the selection
probabilities of an agent are the same in both cases, it should be straight-
forward to scale the results of lazy agents to the matching size of patient
agents.

Furthermore, regarding patient (Figure 2.18) and greedy (Figure 2.19)
agents with large 7 ~ 100, the resulting Beveridge curve is close to the
origin for all behaviours. With a slightly unbalanced market, the number
of free agents on the smaller side becomes effectively zero.

The greedy agent type of friction with smaller values for 7 does not
significantly improve the size of the matching (Figure 2.19). Greedy agents
accept a re-match only when it improves their position by at least 7 ranks.
They would still accept any match if they were unmatched. Similarly to be-
haviours without the frictions, the Better and Blocking proposal behaviours
still result in more unmatched agents than the Noise proposal, as agents
would tend to accept proposals more often. Also, the probability of select-
ing a match for a greedy agent that is a 7-improvement over their current
match appears high for the selected 7 as the size of the matching does not
increase significantly (Figure 2.19).

2.8 Price of invisibility

2.8.1 Median rank in a thick market

Unassigned agent is one important aspect of a matching and as a designer
we might always aim to minimise the number of unmatched agents. How-
ever agents themselves are usually more interested in being matched to a
higher ranked position or partner.

Pittel (1989) showes that in the case of random preferences the average
rank for side A should be Inn and for side B *~. From our data we obtain
average rank for side A to be 7.57 and side B 134, which is close to the
expectation from Pittel (1989), as In1000 ~ 6.9 and 9005 ~ 145. As
the distribution of matched rank is not necessarily normal the average is
slightly different from the median, the median ranks are ~ 5.4 for side A
and =~ 94 for side B.

However, we use the median rank of a matching as a descriptive statistic.
The main reason is that the distribution of matched ranks is exponential,
most receive their first some their second and then the number of agents
decays by rank, and median is much better statistic for an exponential
distribution than the mean rank. Secondly median has a much better in-
terpretation to it as half of the agents received a better and half a worse
rank then the median, but there is hard to find an agent who received the
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average rank. Another alternative would be the the rate parameter of the
exponential distribution, but the parameter describes more the skewness of
the distribution than the outcome. We denote the median rank by 7, and
7 for agents on A- and B-side respectively.

We start by looking at thick, balanced, markets. In Figures 2.20, 2.21,
2.22 and 2.23! we have plotted the median rank as a function of correlation
(c) and length (k) of preference lists. Interesting observations are that in an
A-proposing deferred-acceptance matching the median rank for proposers
is usually very high (lower number indicate ranked higher), except in a
highly correlated markets. However for the responding B-side the median
rank, while in many situations it is similar to the proposing side, when
preferences are uncorrelated (¢ &~ 0.0) the median rank is much higher
when compared to the proposers. This can be explained by the fact that
proposers have idiosyncratic preferences, thus make proposals to different
agents and face less competition and consequently the responders receive
only a few proposals and are sat a disadvantage.

Figure 2.20: Median rank of a deferred-acceptance matching in a thick
market (f =1, ngy = np = 1000)

This is the result of the stable matching lattice, reviewed in section 1.4,
as visible in the example in Table 1.13 on page 38. When preferences
become more correlated, responders have more choice and can be matched
to a higher ranked agent. These observations are also confirmed by other
papers — Immorlica and Mahdian (2005) and Kojima and Pathak (2009)
show that when the preference lists are short, even on one side, the set of
stable matchings is likely to be small, and the difference in ranks is also
small, which we observe when k < 0.4. Roth and Peranson (1999) also

!Surfaces are smoothed with local linear regression
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observed empirically that the size of the core is small when preference lists
are short. However, in the opposite situation, the difference in matched
ranks is greater, as is visible in Figure 2.20.

In Figure 2.21 we show the results from the decentralised behaviours.
The Noise Proposal behaviour results in very similar median ranks for both
sides, A and B, which can be expected as neither side has a definite ad-
vantage over the other. The Better and Best Response behaviours show
inferior median rank compared to the Noise Proposal. In Noise Proposal
model, even the proposer can later reject their own proposed match, the
probability that a matching pair will change is much lower than, for ex-
ample, in Better response. This creates some delay in changing a match
so more agents are able to find an initial potential match, thus making fu-
ture changes more robust. Many changes in a matching means that there
are more free agents (as seen in Figure 2.12) willing to accept any match ,
which can cause the median rank to be lower.

Noise Proposal Better Proposal Best Proposal

Figure 2.21: Median rank of a matching in a thick market (§ = 1,
na = np = 1000)

In Figures 2.22 and 2.23 are the results when the proposing power is
concentrated on A-side. The median rank for agents in 4 and B are shown
respectively. We see that with the Noise Proposal A model the median
ranks for the two sides do no differ by much and are also very similar
to the Noise Proposal model. This indicated that when the behaviour of
agents has a significant amount of uncertainty, market power is not really
important. However, with more rational behaviour, in the Better Proposal
A and Best Proposal A models, the proposing side is able to obtain a better
rank. However, the median rank for the B side remains similar to the shared
proposing model (Figure 2.23), which suggests that agents on B-side have
nothing to lose by A-side becoming a proposer, but has potential regret by
not being proposers themselves.
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Noise Proposal A Better Proposal A Best Proposal A

Figure 2.22: Median rank for A in a matching in a thick market (6 = 1,
na = np = 1000)

Noise Proposal A Better Proposal A Best Proposal A

Figure 2.23: Median rank for B in a matching in a thick market (6 = 1,
na = np = 1000)

2.8.2 Median rank in a thin market

In Table 2.5 we have summarised the median ranks from decentralised
matchings by pairwise comparisons. We compare the decentralised be-
haviour models to each other and in addition to centralised deferred- ac-
ceptance results. We fit a regression model of the form (2.13) to the data.
We are only interested in « coefficients that are statistically significant
on p < 0.05 level and the effect of the coefficient itself is also significant
e’ —1 > 0.05. This shows that when comparing the two mechanism, the
difference in a median rank is significant over the experiments. In the table
same or higher indicates that either one behaviour model resulted in same,
that there was no statistically or effectively significant differences, or bet-
ter rankings, the model resulted in statistically and effectively significant
differences.
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In(7) =B1[c = 0.0,k =0.0,m =I]+ ... + Bplc = 1.0,k = 1.0,m = I]+
+7[c=0.0,k=0.0,m=1II]+ ...+ v[c= 1.0,k = 1.0,m = |
(2.13)

The Table 2.5 shows that almost always Noise Proposal model has
higher median rank than any other decentralised behavioural model. Some
exceptions occur when the preference lists are really short (k = 0.02) or
highly correlated (¢ = 1.0). Exceptions occur for agents on the B-side, they
achieve better median rank in A proposing models, when preferences be-
come more correlated. This is partially explained again by the competition
example mentioned before. So it appears that responding side agents are,
in some cases, also better off giving having only A-side proposing.

Table 2.5: Comparison of median rank

I 11 A-side \ B-side
Noise Better I same or higher
Noise Best I same or higher, except when k£ > 0.6 and ¢ = 1.0
II often same, but
Noise Noise A | I same or higher higher when 0.4 < ¢ <
0.9
I same or higher, ex-
Better  Better A cept when 0.7 < ¢ <
IT same or higher 0.9and 0.2 <k <04
I higher, except when
Best Best A c>07and 0.2 <k <
0.5

I same or higher, ex-
Noise A Better A | cept when k£ < 0.6 and
c<0.6
I same or higher, ex-
Noise A Best A | cept when k£ < 0.5 and
c<0.5

I same or higher

DA Noise

DA Noise A I higher, except when ¢ = 1.0

Although, both sides would be better off by having just one side making
the proposals, this requires coordination, which is not always easy. As with
the Best or Better Proposal behaviours it is beneficial to be the proposing
side, as their median rank is almost always higher than for the respon-
ders (Figures 2.22 and 2.23). In these situations the responders, in more
correlated cases, would not prefer a shared market power either.
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Even though the noise models achieved higher median rank than other
decentralised behaviour models, the fully centralised deferred-acceptance
matching is still an improvement. Only in extreme situations (k = 0.02
or ¢ = 1.0) can the Noise models do better. In many cases the noise
behaviours are two to three times worse than the Deferred-Acceptance, for
example when k£ = 1.0 and ¢ = 0.0 the Noise Proposal behaviour results
is 20 times worse median rank, 7, = 110, than the deferred-acceptance,
Tq ~ 5.4. This is the Price of Indivisibility of agents being merely guided
by an invisible hand, as proposed by Smith (1776) for individual behaviour
in general, in a matching market.

However, there can also be a different kind of market power. Figure 2.24
shows the results of the median rank (74, 75) over matched weighted by the
length of the preference list (ny, ng). First we see that with deferred-
acceptance mechanism the median rank abruptly changes when market
thickness shifts away from # = 1.0. When 6 = 1.0 then agents on both
sides obtain a high rank. However when 6 is slighty more or less than one
then there is a significant drop in matched median rank for agents on the
larger side of the market. Similar observation is made by Ashlagi et al.
(2013a,b).

5 5
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ol | h%‘ % % %‘ otanark
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Figure 2.24: Median rank in a decentralised thin market with ¢ = 0.0 and
k =100%

In decentralised behaviour models the effect of 6 is not so stark. Still
agents on the smaller side usually benefit as they have greater opportunity
to choose from a larger pool. In most models there is an intersection at
6 = 1.0, so when the market is thick both sides are matched similarly
ranked agents. However, when A-side has proposing power, then in Better
Proposal A and Blocking Proposal A behaviours result in better rankings
for A-side. Agents from B-side usually end up with slight lower median
rank, however, as mentioned in Table 2.5, occasionally can benefit.

The Noise Proposal models still produce a higher median rank for both
sides among decentralised models. The Noise Proposal even results in a
higher median rank for the larger side in a thin market compared to the
centralised deferred-acceptance matching. This also comes with a cost for
the smaller side, as they would have much higher median rank in a cen-
tralised market. This can also explain why is some situations it is hard to
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agree among market participants to organise a centralised clearing house as
some might benefit by deviating. See for example job-market for lawyers,
where some firms, despite fixed rules, managed to circumvent and make

early offers (Roth, 2015, p. 68).

2.8.3 Re-matching friction and median rank

Previously, in section 2.7.3, we saw that re-matching frictions can poten-
tially increase the seize of the match in a decentralised market. However,
the effect of these frictions is not all positive. The re-matching friction
increases the size of the matching, but decreases the median rank of the
matched agents. In Figures 2.25, 2.26 and 2.27 we show, similarly to previ-
ous section, the results of the median rank (74, 7) over matched agents from
the lazy agent experiments, weighted by the length of the preference list
(np, ng). Lower values indicate that the median agent has a more preferred
match.

Noise Proposal Noise Proposal A Better Proposal Better Proposal A Blocking Proposal Blocking Proposal A
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Figure 2.25: Median rank for A-side lazy agents

First, with lazy agents, we observe that with the Noise Proposal be-
haviour and minimal impediment the median rank is in about top 20% po-
sition. And surprisingly slightly worse with Blocking Proposal. However,
when only A-side has proposing power this side achieves better median
rank. However, if A-side is smaller from the two, their median rank is in
top 10% regardless of the friction. The re-matching friction also has sig-
nificant interaction effect with market thickness (6). With noisy behaviour
the agents on the smaller side have the power to get matched to more pre-
ferred agents, regardless of the friction. However, with Blocking Proposal
behaviour the effect depends on who is on which side. For agents on the
larger side, the friction has an adverse effect, i.e. the median agent has a
less preferred match. Conversely, for agents on the smaller A-side (6 > 1.0),
the longer waiting time will result in more preferred matches.

Considering patient agents the friction effects on median rank are similar
to lazy agents. However, the median rank from different behaviour models
are much more similar. The Noise Proposal models are not significantly
superior to Best or Blocking proposal models. In addition, with lazy agents
we saw that the friction does not affect much the smaller side of the market,
however, patients agents can be negatively affected if case the friction is too
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Figure 2.26: Median rank for A-side patient agents

severe and result in a lower median rank. We see similar effect, in different
degrees, for greedy agents (Figure 2.27). As the friction increases, initially
the median rank improves as well, however when passing a certain threshold
(here about 7 &~ 20) the median rank starts decreasing.

Noise Proposal Noise Proposal A Better Proposal Better Proposal A Blocking Proposal Blocking Proposal A
P P P P g Prop g Prop

Figure 2.27: Median rank for A-side greedy agents

As friction waiting times decrease the expected matched rank of an
agent, it might not be rational for agents to participate in such a market.
So market participants would advocate for lowering friction, for the reward
of being better matched. However, they would also be taking an additional
risk of being left unmatched.

2.9 Conclusion and discussion

Recent contributions to the economists’ understanding of the micro- foun-
dations of the Beveridge curve have enriched the early work of Blanchard
et al. (1989). However, substantial gaps remain in our understanding of
both the impact of the matching technology as well as the process of in-
cluding mechanisms which affect the Beveridge curve. Thus, we contribute
to this research gap by studying the micro-foundations underlying the Bev-
eridge curve.

We translated the framework of Diamond-Mortensen-Pissarides to an
agent-based model, with the intention of explaining both the movements
along the Beveridge curve and the shifts (location) of the curve itself. Our
simple model shows a two-sided decentralized market game with three key
determinants — preferences, information and market conditions. Thus, it
may be argued that instead of explicitly modelling labour market institu-
tions, we implicitly include features of institutions by modelling the var-
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ious behaviours of agents. Our agents can have degrees of heterogeneous
or completely homogeneous preferences. The structure of the preferences
indicates a notion associated with the possible mismatch of the skills of
workers across jobs. There might be high demand for the same jobs and
same workers, which form the source of the mismatch. We have multiple
approaches to model preferences. Firstly, agents can be heterogeneous with
random preferences and full-length preference lists. Secondly, preferences
can be correlated to some degree which is common to all agents. Thirdly,
the length of the preference list of the agents can vary, which indicates that
not all positions are acceptable or not all agents are suitable for certain
positions. This allows us to model the limitations of structural unemploy-
ment.

The cornerstone of our analysis is our assumption about information.
Information determines how the market game is played. Generally our
agents are myopic — at each stage of the game, they make random deci-
sions and accept better proposals without any alternative strategic thinking.
Agents do not learn. However, we studied different behavioural models. In
our initial Noise proposal (zero-intelligence) model, agents make random
proposals. For comparative purposes, we constructed two alternative deci-
sion models — the Better proposal and the Blocking proposal model. In
the Better proposal model, agents randomly make proposals only to a more
preferred agent than their current match. In the Blocking proposal model,
agents only make proposals to a random blocking pair, indicating that the
proposal is always accepted.

Through the computational experiments, we found the aggregate num-
ber of vacancies and unmatched agents which constitute the Beveridge
curve. We have three relevant agent related dimensions that explain the
position of the curve and/or the current position along the curve -— the
correlation of preferences, the length of the preference lists, and the as-
sumptions about the decision-making mechanisms of the agents. For com-
parative statics, we first showed that low correlation (heterogeneous agents)
will shift the Beveridge curve downward and long lists of preferences have
a similar effect. We also observed that the assumptions about the decision-
making behaviour affect the location of Beveridge curve considerably. Noise
proposing models shift the Beveridge curve toward the origin compared to
the Better or Blocking proposal models. This insight can be interpreted
in light of the search and wait unemployment concept — zero-intelligence
agents make random proposals that are not always accepted, while more
advanced players make better proposals, thus resulting in a better match
for the agent, but smaller matching overall.
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In addition, we were interested in the effect of market thickness. This
is the indicator for measuring the balance between market sides, i.e. equal
number of jobs (agents) and worker agents indicates a thicker market. We
demonstrated that thickness affects movement along the Beveridge curve.
For instance, in the case of random preferences, we move right-down along
the curve if there is an decreasing number of positions (job offerors) com-
pared to agents (job seekers). This shows that the Beveridge curve is mostly
the result of out-of-equilibrium dynamics in interrelated markets, affecting
job creation and destruction rates. It appeared that regarding the Bet-
ter and Blocking proposal mechanisms, changing market thickness simply
means shifting the number of free agents or positions from one side of the
market to the other. On the other hand, when agents make proposals ran-
domly and market thickness becomes closer to one, the decrease in the rate
of free agents is not linear, but a square root of free agents from the other
side. Therefore, each additional position has a larger effect than one ad-
ditional match, meaning that it creates opportunities for more agents to
be matched. As the Better and Blocking proposals implicitly model search
institutions, e.g. job hunters, it seems that these have a decreasing effect
on employment.

The investigation of Noise behaviour revealed that the decreasing effect
on unemployment and vacancies is related to limiting the probability of
re-matches. Additional experiments showed that by enforcing some obsta-
cle, friction, on the termination of the contract brings the Beveridge curve
closer to the origin. These frictions might also have a basis from human
psychology, as a sense of duty might limit an agent’s willingness to termi-
nate an existing contract. The longer the obstacle lasts, the closer to the
origin the Beveridge curve locates. However, we also saw that frictions af-
fect the matched rankings, i.e. with stronger friction the expected matched
rankings decrease.

Finding a stable solution in a decentralised market is hard as the market
becomes large. Even when there are 1000 agents on both sides, in our ex-
periments, we rarely found a stable matching. In a very extreme situations
with short and correlated lists we find stability. In decentralised markets
the stability notion is not very useful, rather the existence of blocking pairs
results in some dynamic in the market. Furthermore, Best and Better Pro-
posal models tend to perform worse that the Noise Proposal models. In
a sequentially matched results they tend to result in more blocking pairs,
more unassigned agents and agents having a less preferred match.

The Price of Invisibility showed that in a thick market all the partici-
pants, from both sides, would prefer the centralised clearing house to the
decentralised market. In a centralised case more agents are matched and the
median rank either remain the same or is in fact better, when preference
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list are longer or more correlated. However, all decentralised behaviours
were better in terms on median rank for the larger side in a thin, unbal-
anced, market. So in a thin market, agents on the larger side would prefer
a decentralised market to a centralised matching.

The effect of market re-matching friction on median rank also depend
on the thickness of the market. More severe frictions have an adverse effect,
the median rank increases, on the larger side of the market, while beneficial
for the smaller side. Moreover, too severe frictions can be damaging to
all participants, so when regulating a market setting this parameter need
to be carefully considered. With potentially unobservable behaviours and
dynamic market conditions, this might become a sisyphean task.

Our approach had several simplifying assumptions: no transaction costs,
no search and matching costs, no agency, homogeneous behaviour, and
no dynamics (behaviour learning, new agents or change in preferences).
Despite this, we open a path of research in agent-based modelling in order
to contribute to the search and matching literature. Modelling matching
technology by including some kind of a job board or alternative agency to
the agent-based model remains a challenge for the future research.
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3 Strategies in Tallinn School Choice Mechanism

3.1 Introduction

Significant research has been recently carried out to explore the allocation
of school seats to students in primary (e.g. Abdulkadiroglu et al., 2006,
2011; Dur et al., 2013), secondary (Dur et al., 2013) as well as upper-
secondary schools (Abdulkadiroglu et al., 2015, 2009). In this agenda, two-
sided matching markets are used as in the “marriage problem” to solve “the
college admission problem”. Some unexpected results concerning agent
incentive schemes have been obtained (Abdulkadiroglu et al., 2011; Ab-
dulkadiroglu and S6nmez, 2003; Pathak and Sénmez, 2013, 2008; Erdil and
Kumano, 2013; Erdil and Ergin, 2008).

The existing matching mechanism literature is growing, not only in
terms of new cases and designs, but also by adding new problematic de-
sign areas; that is, encouraging diversity with the use of quotas or priority
classes that in many cases can fail to enforce social justice (Dur et al., 2013;
Kominers and Sonmez, 2013; Fragiadakis and Troyan, 2013; Erdil and Ku-
mano, 2013). However, to the best of our knowledge, there is no literature
dealing with post-communist school allocation mechanisms. Our experience
indicates that in the Soviet era, mechanisms were widely in use in many
spheres; for example, the allocation of university graduates or university
choice. One common characteristic of the communist mechanisms was the
school-proposing nature while the submitted preferences were marginally
considered. The latter has not diminished its prevalence — many applica-
tions in two sided markets are still initiated by the “stronger side” and have
no welfare considerations.

We are contributing to the matching research agenda by studying the
Tallinn school choice mechanism (Tallinn mechanism hereinafter). Notably,
Soviet-style central matching was abandoned in the Tallinn school market
during the liberal reforms after the 90s and substituted by decentralised
or semi-centralised designs. Over the last few years, central matching has
been reintroduced in the Tallinn school market for allocating children to
primary schools. Through trial and error, local policy-designers established
the Tallinn mechanism as a central marketplace in 2012. This mechanism
has specific characteristics in addition to the school proposing nature. First,
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students are prioritised according to distance from the school. Second,
families can submit three unordered preferences. Third, the mechanism
uses immediate acceptance (Boston).

As with the shortcomings of the Boston mechanism, which has cre-
ated a rule of thumb for submitting the preferences strategically (Ergin
and Sonmez, 2006; Pathak and Sonmez, 2008; Pathak and Shi, 2013; Ab-
dulkadiroglu et al., 2011), we show there are similar rules of thumb for ma-
nipulation under the Tallinn mechanism. In the Boston mechanism there
are different levels of sophistication among families who participate in the
mechanism; that is, one strategy was to avoid ranking two over-demanded
schools as their top choices or an unsubscribed school or popular school
was recommended to be put as the first choice plus a “safe” second choice.
Hence, as Pathak and Sénmez (2008) showed that the Boston mechanism is
a coordination game among sophisticated families. Thereby “levelling the
playing field” by diminishing the harm done to families, who do not strate-
gise or do not strategise well, is emphasised as a condition for designing the
new mechanism. Similarly, we introduce the Tallinn mechanism as a sophis-
ticated game. We ask how many preferences it is rational to report under
such a mechanism and whether families reveal their true top preferences or
manipulate in both dimensions — report only a limited number of prefer-
ences which might not be at the top of their preference lists. In addition,
we ask whether this behaviour is dependent on their preference structure —
the functional form of their estimated cardinal utility function. The latter
allows us to show whether the strategy of revealing preferences is dependent
on the relative cardinal measure of utility from first, second etc. preference
— which can be considered a measure of marginal utility. Moreover, we are
interested in social inefficiencies defined as the difference between individual
allocated ranks and unassigned families under the Tallinn mechanism com-
pared to the optimal deferred-acceptance mechanism (Gale and Shapley,
1962).

Our research design is based on computational experiments. For de-
scriptive analysis, we use data from the centralised database, e-school. The
e-school database is an electronic register, where approximately 4000 7-
year-old children with a known home address annually list their school
selections. The rest of our data is synthetic. Our research strategy is the
following. After descriptive stylised facts, we use genetic algorithms to find
the best strategies for revealing the preferences of families. We illustrate the
results by indicating some cases of utility functions. Family agents optimise
strategies by observing their allocation and the obtained utility and adapt
according to the rules of the genetic algorithm. We do not argue, that ge-
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netic algorithms is necessarily the way how families learn, however we use it
as a tool to find an approximate Nash equilibrium strategies (Riechmann,
2001b,a).

We continue as follows. First, we describe the broader Tallinn school
market, then the concrete mechanism used by the Tallinn education admin-
istration — the Tallinn mechanism. In section 3.3, we describe the preference
generation, the utility function and genetic algorithms. In section 3.4, we
describe the results of the parental strategies and the obtained allocation
after revealing what and how much to report to the central marketplace.
Finally, we conclude by highlighting the policy implications for Estonia and
for other decentralised and centralised markets.

3.2 Background: Tallinn school market

Over the years, some schools in Tallinn have become over-subscribed. These
selective schools have inter-district admissions to primary school and have
all introduced aptitude entrance tests (hereinafter exam schools). For intra-
district comprehensive schools (hereinafter regular schools), the tradition
has been a central or semi-central catchment-based allocation based on
an application (single preference or multiple preferences) from the family.
Rejected offers were not treated centrally — each school and student should
find the match independently.

The admission process for the exam schools takes place between January
and March. We note that it has been shifting from March (in 2012) to
February (in 2013) and even to January (in 2014). The second stage (in
the Tallinn mechanism) in regular schools starts on 1st of March with the
submission of an electronic application to the e-school register. Central
but manual entries are made by 25 May. By 10 June, parents must either
accept or decline offers. There is a later decentralised round of applications
for additional vacant positions after 15 June.

To make the entire school choice procedure more transparent, we high-
light the following steps:

1. Students are assigned to exam schools based on an uncoordinated
school proposing Deferred-Acceptance (DA) mechanism of decentralised
schools

2. The remaining students are centrally assigned to regular schools based
on the Tallinn mechanism

3. Unassigned students are assigned to the closest schools potentially re-
jecting an already assigned student. Some students might be assigned
to a school they did not apply to. This continues until all students
are assigned.
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4. Students can reject their assigned position. Once the response dead-
line has passed, schools can autonomously accept students for any
available positions.

Therefore, the hybrid structure of the Tallinn school market consists
of exam schools (decentralised matching), the Tallinn mechanism (central
matching) and the final decentralised round. We are only modelling the
Tallinn mechanism.

3.2.1 Tallinn mechanism

The Tallinn mechanism governs only the central admission procedure to all
municipal primary schools. These schools rely on the following procedural
steps. First, families submit an application where they list up to three
schools. Then the seats are allocated based on the following procedure:

0 Look at the schools in a random order. Each student is only consid-
ered for the school to which the family applied.

1 Allocate students to the first school for which they have high (siblings
and distance-based) priority until the quota is full.

2 Allocate students that were not allocated before to the second school
for which they have high priority until the quota is full.

k Allocate students that were not allocated before to the k-th school
for which they have high priority until the quota is full.

It is important to stress that regular school applications are limited to
three options; in other words, the parent has the right to list three schools,
but these are not considered in any particular order. The application can
also contain information about siblings and the school(s) they attend. Cen-
tralised school priorities are considered based on the student’s distance from
the school (in metres) from the officially registered address.

We use descriptive statistics to illustrate the micro-mechanism in Tallinn
over three consecutive years — from 2011 to 2013. In 2011, the market was
decentralised. However, applications were centrally collected without any
upper limit on the submitted preferences. The Tallinn mechanism has been
in use since 2012, limiting the amount of unordered preferences submitted
to three (see Table 3.1).

This stylised fact illustrates the tendency to report a limited list. Most
families submit only a single preference. However, there is no clear indica-
tion that parents do not manipulate as in the Boston mechanism and decide
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Table 3.1: Number of reported preferences under the Tallinn mechanism

# of prefs | 2011 2012 2013
1 52% 4% 6%
2 18% 15% 14 %
3 1% 11% 9%
>3 8% 0% 0%
Mean 2.2 14 1.3

to reveal strategically lower preferences or “safe” choices. Therefore, we are
interested in whether it is rational to report less than three preferences and
what the rationality is of reporting truthful preferences.

While there Tallinn school market in more complicated and families
may report less because they are guaranteed a position in the 3rd round.
We argue that the differentiation is hard to determine and aim to show that
even when the 3rd round is not present, families may prefer to report less
than possible.

3.2.2 Example of deciding what to report

We illustrate the choice set for parents using a simple extensive form game
(Figure 3.1). In such a game, the parents in the starting node have three
strategies — to report either 1, 2 or 3 preferences. In the following subgames,
the designer randomly allocates the student to the reported school or an
outside option. In the final nodes, the utilities are reported by indicating
the preference — 1 stands for first preference and () indicates the utility of
the outside option. In the illustration below, we assume risk neutral agents.

Figure 3.1: Extensive form reporting game

Assume that we have two utility functions, where k indicates a position
in a preference list:

o ui(k) = 0.358 — 0.025(k — 1)
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e uy(k) =0.658 — 0.325(k — 1)
Then we obtain cardinal utilities for k£ € {1,2,3} as in Table 3.2.

Table 3.2: Utilities

1] 0.358 0.658
210333 0.333
31 0.309 0.009

Assuming the uniform probabilities of being unassigned or assigned to
one of their preferences, as in Figure 3.1, we can compute the expected utili-
ties for both utility functions and all cases of reported preferences. Notably,
we do not take into account the demand for a school or the overall avail-
ability of places. Moreover, it is preferable to always report schools higher
in the preference list, so we do not investigate cases where, for instance,
only the second or third choice is reported, because the expected utility
will definitely be lower. This might not be the case when the probabilities
of being assigned to a particular school are not uniform.

We see that the probability of being left unassigned decreases as more
preferences are reported, but so does the probability of getting a place in
the most preferred school. The expected utilities for u; (k) are:

o for reporting one school E;[ug(k)] = 5(0.358 +0) = .179
e for reporting the first two schools Es[u; (k)] = %(0.358—}—0.333) =.230

e for reporting the first three schools Es[ui(k)] = $(0.358 + 0.333 +
0.309) = .250

We see that reporting all three preferences maximised utility. With utility
function ug(k) the expected utilities are:

e for reporting one school E[u1(k)] = (0.658 +0) = .329
o for reporting the first two schools Es[uy (k)] = £(0.658+0.333) = .330

o for reporting the first three schools Esfui(k)] = +(0.658 + 0.333 +
0.009) = .250

As Figure 3.1 illustrates the game, where under the expected utility

maximisation assumptions, parents obtain higher utility by reporting only
one or two schools with ug(k).
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We are interested in finding near-optimal strategies in large markets,
where agents might have similar preferences or there are popular and over
demanded schools. Additionally, the revealed demand also depends on the
strategies of the agents and the revelation strategies depend on the revealed
demand.

3.3 Model

3.3.1 Environment

We are interested in understanding strategies in multiple environments. We
characterise the environment with societal parameters (Tables 3.3 and 3.4)
and the parameters of an individual. Societal parameters describe the num-
ber of schools, the number of exam (popular) schools, the correlation be-
tween ordered preferences, and so on. Exam schools exist because they are
popular overall, so we consider them as a metaphor for globally popular
schools. Moreover, in Tallinn, these schools are still allocated the most
groups through the Tallinn mechanism.

We fix the number of schools, the number of places in a school and the
number of students for all our experiments (Table 3.3). In addition, the
maximum number of ordered preferences for each agent is fixed. We model
families as agents. They are willing to apply to or can rank up to 15 schools
at the most, although the utility from lower preferences is relatively small.
This is partly driven by case specificities, as 15 was the maximum number
of schools listed in the decentralised market in Tallinn in 2011. From those
15 ordered preferences, agents have to select three to report in the Tallinn
mechanism.

We investigate societies, where agents can have random or spatially
correlated preferences — the latter indicates that schools nearby are more
desired (Table 3.4). We also look at the effect of having the same set of
popular schools — exam schools. In these societies, all agents would prefer
exam schools, even if they are further away than the nearest regular schools.
In the case of spatial preferences among exam schools, agents would still
prefer schools nearby, and no other criteria matters. In each computational
experiment, all these parameters are fixed. The priorities for schools are
always spatial, distance based. Agents closer to a school have a higher
priority in that school.

For each agent looking for a place at the school, we only have one
parameter: the functional form of the utility function described by the
parameter (o). The latter indicates the slope of the utility function. In each
experiment, our agents are heterogeneous, so they have different values for
the slope of the utility function.
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Table 3.3: Fixed societal parameters

Parameter | Description

k=15 Length of preference lists
n = 3000 | Number of family agents

m = 50 Number of schools

qj = 60 Number of places in school j

Table 3.4: Variable societal parameters

Parameter ‘ Description

ce0,1 Spatial correlation in preferences
me € {0,10} | Number of exam schools

3.3.2 Preferences

We assume that agents have strict preferences for schools. In the simplest
case, preferences are random; in other words, each agent has a totally id-
iosyncratic preference ordering. In general, we can think of more structured
preferences in a society, parametrised by the length of the preference list (k)
and the correlation between the preference lists (¢). In our experiments, the
preference lists are limited to k = 15. Correlated preferences stem from a
spatial preference ordering, and can also be considered 2D-Euclidean prefer-
ences (Bogomolnaia and Laslier, 2007). The degree of correlation is also the
same for all agents, but the preference ordering is not necessarily identical
when comparing two agents due to the spatial nature of preferences.

We generate the preferences using the Algorithm 3 with parameters k,
¢ and m. This algorithm is a modified version of a random permutation
algorithm (Knuth, 1997a, p. 145) to generate correlated preferences with
parameter c. The algorithm starts with a master list of n numbers (agents).
Then it iterates the list from beginning to end, each time at position j ran-
domly selecting a position ¢ € [j + 1,n] to exchange values with. The
correlation parameter c illustrates how biased the randomly selected posi-
tion is; higher values indicate that the exchange position is selected closer
to the current position j. With ¢ = 0.0 the selection is uniformly probable
over all positions, until finally at ¢ = 1 the exchange position is always the
active position and all the generated lists are exactly the same. There is
one global ordering of agents for each side of the market that is used for
generating correlated preferences.
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3.3.3 Utility function

While agents have a preference ordering for schools, their behaviour might
also be influenced by the cardinal utility they gain from assignment to the
particular preference. A similar notion was illustrated by the reporting
game in Section 3.2.2. In order to understand the behaviour with different
cardinal valuations, we use exponentially declining utility over alternatives.
When compared to consecutive schools ¢ and i+ 1, we assume that % =
1 — «. Furthermore, we need to normalise the utility function such that
Ef::l (1) = 1. The resulting form of the utility function is in (3.1), where
i €{1,...,k} is a position in the preference ordering.

i—1
uli) = a(l — )
1—(1—a)k
When a — 0, then cardinal utilities for all alternatives are exactly the
same u(i) = $Vi. When « = 1, then all utility is concentrated in the first
preference, that is u(1) = 1. In Figure 3.2, we show the utility values using
some examples of a.

(3.1)

e 0001
A 01
02
+ 04
®o7

1.0
0.25 *

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Preference

Figure 3.2: Exponential utility function

The utility function can be compared to a linear utility function over
perfect substitutes u(x1, ..., z,) = f121 + ... + Bnxyn, where the consumer is
allocated at most one good x;. The 3; is the value of the allocated good x;
to the consumer (e.g. Varian, 2006, p. 61). Our utility function (3.1) states
the shape of the decline in value §; of the goods to consumers. We assume

that agents are risk-neutral, i.e. they maximise their expected utility Fu].
u(i+1)
ui)
decision theory, Saaty scale (Saaty, 1978), is supported by some psycho-
logical observations (e.g. Franek and Kresta, 2014, and references therein)
and is often used in human decision making (Herrera et al., 2001; Chen
et al., 2013; Gavalec et al., 2015). Another reason is that differences are
greater in geometrically declining function than linearly. So the effects we

are investigating are more evident.

Using utility ratios to measure on preferences is also popular in
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3.3.4 Genetic algorithms

We use genetic algorithms to find a near-equilibrium strategy for reporting
in the Tallinn mechanism. The genetic algorithms adapt existing strategies
to find better ones that would result in an increased utility. The result
of a genetic algorithm after optimising is a near-equilibrium steady state
(e.g. Riechmann, 2001a,b). While a steady state is also by definition a Nash
equilibrium in a game, it could simply be one among many in multiple equi-
libria games. Additionally, there is always a random mutation in genetic
algorithms, which keeps the state near, but not exactly at equilibrium. Our
experiments are carried out with populations of agents, where each type of
agent population, defined by the utility function, learns a distribution of
strategies. This is also known as one-population social-learning (Vriend,
2000) as opposed to individual multi-population learning (Chen and Tai,
2010; Chen et al., 2012).

There has been extensive use of genetic algorithms and programming
in finance (e.g. Chen, 2002; Chen et al., 2011; Chen and Tai, 2010) and
economics in general (e.g. Riechmann, 2001b). Agents learn better trading
strategies by observing the market. The main difference compared to our
model is that agents do not have much to observe about the school market.
Players do now know either the overall demand for schools or the prefer-
ences of other agents in the market. The only information source is their
own allocation and the utility they gain from the market. With genetic al-
gorithms, our approach is to find strategies that would maximise the utility
of the agents.

Here we do not assume that the manner of genetic algorithms is in reality
how humans learn. We only employ it for computational tractability, as
exploring the entire strategy-space for 3,000 agents is resource consuming.
However, there are studies that use a form of genetic algorithm as a model
for learning (see e.g. Unver, 2001; Roth, 2002; Unver, 2005) and is also
observed as exhibiting features with human subjects (e.g. Arifovic, 1994,
1996; Duffy, 2006).

Genetic algorithms have two basic operations for finding an improved
strategy (e.g. Simon, 2013): mutation and crossover. Mutation slightly
tweaks an existing strategy and cross-over merges two successful strategies
to find a better one. Finally, selection indicates an operation that eliminates
the least successful strategies. Since agents in our model can have various
utility functions, as specified by the a parameter, the strategy elimination
and cross-over operations are contained in the a-population. Additionally,
strategies for different a values might not be the same.

A strategy in the case of the Tallinn mechanism is simply a bit-string.
A bit-string is a series of 1-s and 0-s, which respectively stand for reported
and not reported preference. Since we limit our agent’s preferences to
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Algorithm 4 Simple Genetic Algorithm - single iteration

Require: A set of agents, u agents utilities
Ensure: A is a set of agents
n + | A
54 D gea Ua
p < {**,Va € A} {selection probabilities}
1+ 0
for all ry, 7y € Select(A,p,n) do
{select with probability p, with replacement n pairs of strategies}
a; < CrossOver(ry,r2) {assign new strategy to agent a;}
if RandomNumber() < 0.05 then
Mutate(a;)
end if
141+1
end for
return A

k = 15, the length of the bit-string is 15 bits. Since the Tallinn mechanism
is limited to just three preferences, the bit-string can contain at most three
bits set to one. For example, a possible strategy for agent ¢ might be
a; = 100110000000000; that is, the agents with this strategy would report
their first, fourth and fifth preference.

We run our genetic algorithms for a fixed (2000) number of steps. In
each step, an allocation is made based on the Tallinn mechanism and we
get the utilities for each agent. Then based on the rules of the genetic al-
gorithm the strategies evolve. In Algorithm 4, we present a simple genetic
algorithm (e.g. Riechmann, 2001b; Simon, 2013). It consists of three op-
erations: selection, crossover and mutation. The selection operator selects
strategies with replacement and probability proportional to the expected
utility. The cross-over operation randomly selects the value from either
strategy for each position. Finally, with a small 0.05 probability we mutate
the new strategy.

We evaluate four versions of genetic algorithms: simple genetic algo-
rithm; genetic algorithm with election; genetic algorithm with stud selec-
tion; and genetic algorithm with elitism. The last three are slight mod-
ifications of the simple genetic algorithm. In the election modification,
the agents remember their previous strategy and the corresponding util-
ity. Before the selection operation in the next allocation, each agent picks
the strategy with a higher utility from the previously remembered and the
newly evaluated strategies (e.g. Riechmann, 2001b). In the stud selection,
we pick the top 20% of strategies with higher utility and always set one
of the strategies in the cross-over operator to be in the top 20% (Simon,
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2013). In addition, we ignore the bottom 10% of strategies. In elitism, we
keep the top 20% of strategies fixed and only use the remaining strategies
in the crossover (Simon, 2013).

Uncorrelated (c=0) and no exam schools (me =0) Spatial (c=1) and with exam schools (m, = 10)

Genetic algorithm
= Election

Genetic algorithm
— Election

— Elite s — Elite
- = Simple

- Swd 010

- = simple
- sud

Figure 3.3: Mean utility

Uncorrelated (c=0) and no exam schools (me = 0) Spatial (c=1) and with exam schools (me = 10)

Genetic algorithm Genetic algorithm
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- = simple > - = simple
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Figure 3.4: Ratio of variance and mean utility

Figures 3.3 and 3.4 show the results from the four variations of genetic
algorithms. We see that the stud selection usually performs the worst, has
the lowest utility and highest variation in utilities compared to the other
variations. If preferences are spatially correlated and there is a large number
of exam schools (m. = 10), we can see that the simple genetic algorithm
does slightly better with large values of a than with alternatives. For lower
values of «, the simple model is statistically equivalent to the election and
in some cases to elite selection. As the simple model does as good as others
we further analyse the results from the simple optimisation method.

3.4 Results

3.4.1 Expected utility maximising strategies

The reported results are divided into four cases. In all of the figures il-
lustrating the results, in the upper left corner the results with no correla-
tion (random) preferences and no exam schools are indicated; in the upper
right corner, the results with spatial (2D Euclidean) preferences and no
exam schools; in the lower left corner, random preferences and ten exam
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schools; and in the lower right corner, correlated preference lists and 10
exam schools. Figures 3.5, 3.6 and 3.7 show a plot with the average of the
population playing a type of strategy and the standard deviation of the
population over 400 experiments. The standard deviation is often small so
it is not always visible on the charts.
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Figure 3.6: Reported preference by utility coefficient «

Firstly, we are interested in the strategy length — the number of schools
to be reported. In Figure 3.5, we show the strategy length by a proportion
of the respective a-population. In general, it is elucidated that the decay in
the utility function is a significant determinant of a good strategy. When
a =~ 0.0, it is best to randomly select the number of schools to report with
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Reported preference
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Figure 3.7: Reported preference by strategy length

roughly uniform probability. When « > 0.4 and there are no exam schools,
it would almost always be best to report only one school. With random
preferences, when « = 0.2, there is a phase transition in the number of
schools to report, as the variation at this point is largest. Therefore, it is
really difficult to pick a good strategy for how to report.

General trends show an increase in standard deviation in the strategy
length when moving from spatial preferences to random preferences, or from
having no exam schools to having 10 exam schools. Spatial preferences are
aligned with school priorities, resulting is more predictable matches; there-
fore, the resulting strategies have a lower standard deviation. Standard
deviation can also be interpreted as the uncertainty of the resulting match,
when playing a certain strategy. In regard to exam schools, the uncertainty
is greater than in the case of no exam schools, and even greater when the
preferences are random in addition to exam schools.

Secondly, we are interested in how the mixed nature of the market —
exam schools which are always preferred to regular neighbourhood schools
— affect good strategies. We see that in the case of random preferences
for high «, it is still often optimal to only report a single school. For
medium «, the best strategy is to report 2 or 3, and only with low « (i.e.
marginal utility is almost constant) is it best to randomly select the number
of schools. If we assume that parents do not have a preference between the
top three exam schools, they report the maximum number of preferences.

We are also concerned with what to report. Figures 3.6 and 3.7 show
the preferences reported by the agents’ a and the strategy length. We see
that without exam schools it is almost always (~ 90%) optimal for a > 0.4
to report from the top of the preference list, namely just their first prefer-
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ence. In regard to exam schools and random preferences, optimal reporting
depends more on «, but generally the top three schools are reported. Fig-
ure 3.6 illustrates that in the case of exam schools and spatial preferences
with high «, it would be better to report something from the higher and
lower ends of exam schools, skipping the middle. Reporting schools lower
on the preferences lists probably indicates that those agents would be oth-
erwise unassigned, due to high demand, so they gain at least some utility.
For medium «, the first three preferences are almost equally good. For
indifferent agents, o = 0.0, it would be best to randomly pick some schools
from the list of regular schools. Also for agents with o = 0.1, it would be
beneficial to specify their most preferred exam school and most preferred
regular school.

In Figure 3.7 the preferences are reported with different strategy lengths.
The results show that it is always best to at least report one’s most preferred
school, as one might get lucky. If reporting more schools, it is useful to
add the second most preferred school or with a small probability select
something from even lower on the preference list. However, when reporting
three choices, the selection of schools depends on the state of the school
market. When preferences on the market in general are random with 50%
probability, the first two preferences should be reported and the remaining
options uniformly from the remainder of the preferences. In the case of
spatially correlated lists or exam schools, the most preferred school should
be almost always given. And when preferences are generally spatial, select
the remaining options randomly. On the other hand, with exam schools
and uncorrelated preferences when it is best to report three schools, it is
usually best to report the top three.

3.4.2 Social welfare

Previously we investigated the individual behaviour of agents, but now we
consider how these behaviours influence the outcome for the entire society.
For this, we compare the results of the Tallinn mechanism to the widely
used Deferred-Acceptance (DA) mechanism (Gale and Shapley, 1962; Ab-
dulkadiroglu and Sénmez, 2003) as described in Section 1.4. Similar to the
Tallinn mechanism, the priorities in the Deferred-Acceptance mechanism
are also only based on distance.

We look at two measures of social welfare. First, the proportion of
unassigned agents (Figure 3.8) and second the mean utility in the allocation
(Figure 3.9). Usually, the measure used in matching problems are the
allocated preferences, but this is mostly due to not having access to the
utility. Since in our experiments, we know the agent’s utility, we measure
the mean utility over all the agents.
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Figure 3.8: Unassigned agents

Figure 3.8 illustrates assignment probability based on the agents’ «.
We see that by using the DA mechanism and assuming random preferences
(¢ = 0.0) and no exam schools (m. = 0), there are no unassigned agents.
When preferences are spatially correlated (¢ = 1.0), we can see that about
10% of students are unassigned, and this probability does not depend on
agent type.

As described in section 3.3.2, we have m. = 10 exam schools that are
always first on the agents’ preference lists. Under such circumstances, only
a small fraction of students receive a position in the top ten schools of
their preference. Since there are fifty schools, exam schools account for
20% of places, so 20% of students receive a place in one of their top ten
schools. Again, with uncorrelated preferences, DA can guarantee a place
for all the students. Naturally, the students might receive a less preferred
school. In the case of spatial preferences (¢ = 1.0, m. = 10), even with DA,
a significant number of students - about 10% - would be left unassigned.
With the Tallinn mechanism, the number of unassigned students would be
even higher — about 70% of students who have a > 0.2 would be unassigned.
This is mainly due to agents maximising their expected utility and do not
have a negative utility by being left unassigned.

In Figure 3.9 we show the expected utility under the two mechanisms.
Expected utility is often higher in the Tallinn mechanism compared to the
DA results. A similar result was discovered in the manipulable Boston
mechanism Abdulkadiroglu et al. (2011). This leads to the conjecture that
manipulable mechanisms provide the option to maximise an agent’s ex-
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Figure 3.9: Mean utility comparison: Deferred-Acceptance and Tallinn
mechanism

pected utility at the risk of being unassigned or assigned to a low ranked
preference. Yet, as a result, a large number of agents are unassigned in the
Tallinn mechanism.

We observe that agents with a = 0.999 would maximise their expected
utility by only reporting their first preference (Figure 3.5 and 3.6). This
is due to the high utility value of their first preference, but because only
a few preferences are reported, there is also a large probability of being
unassigned under the Tallinn mechanism (Figure 3.8).

When agents are not particularly concerned with the school they are
allocated to (« is small), the best strategy is to report randomly (see Fig-
ure 3.6). This also guarantees that students will not be unassigned, which
is demonstrated in Figure 3.8. Other agents trade the probability of being
unassigned with being assigned to a more preferred school. We see that for
agents who have « > 0.3, there is a high probability of being unassigned.
However, there must be a considerable number of agents who are assigned
to their top preferences on the condition of there being no exam schools,
which increases the average utility from the allocation.

3.5 Conclusion and discussion

Our aim was to contribute to the mechanism design literature about school
choice by adding a description of the Tallinn mechanism, which is a cen-
tralised school-selecting assignment based on the student’s distance from
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the school. Moreover, we wanted to indicate what the manipulative be-
haviour of agents is under such a mechanism; that is, how many preferences
they report and how truthful their preference revelation is.

We used computational experiments to show the near-optimal strategies
of the agents. For optimisation, we used a simple genetic algorithm, which
outperformed the alternatives.

Our model setup was the following: 50 schools (10 exam schools), 60
seats in each school and 3,000 agents. The agents (families) were heteroge-
neous, but their spatial preferences could have been correlated. Therefore,
our emphasis in comparative static analysis has been on three parameters —
the shape of the utility function of the agents, the number of exam schools
and the correlation in the preferences of the agents. The first parameter
space («) illustrates the decreasing utility over alternatives and makes it
possible to study cardinal preferences. The second parameter makes it pos-
sible to study case specificity — exam schools are popular schools at the
centre of the city that are preferred by most families due to public in-
formation from league tables or from their reputation according to “hot
knowledge”. The third parameter makes it possible to indicate the effect
of the homogeneity-heterogeneity of the agents. Homogeneity of agents can
be interpreted as a post-Soviet tendency towards non-diversity of “good
taste” — correlated preferences show that agents have similar preferences
for schools. However, we used spatial preferences and we always put exam
schools at the top of the list. This action is justified by empirical evidence
(Poder and Lauri, 2014).

Our results show that in many circumstances under the Tallinn mecha-
nism it is often best to report only one school, even if there is an option to
report multiple schools. It is rarely beneficial to report three options (the
maximum number). Nevertheless, it would benefit agents to report a school
from the top of their preference lists. When reporting three schools, it is
not always best to report the top schools and it seems to be advantageous to
select the third option uniformly randomly from the remaining preferences.
For agents with near-zero marginal utility, if they exist, it is best to report
schools randomly. Additionally, the Tallinn mechanism maximises the ex-
pected utility of the agents, if the agents learn what and how to report, but
also runs a large risk of agents not being assigned to schools. The max-
imisation of expected utility seems similar to a similar phenomenon in the
Boston mechanism (Abdulkadiroglu et al., 2011) given that families know
how to manipulate and might be a more general property of manipulable
mechanisms.

We were interested in a situation, when agent have significant utility dif-
ferences over preferences, we used a multiplicative form utility function to
model the change in utilities over alternatives. To some extent our results
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are influenced by this assumption. However, the multiplicative form has
been shown to be useful and applicable in many situation with human de-
cision making. Alternative form utility function remain for future research.
In addition, the derived equilibrium is sensitive to the distribution of the
degrees of the utility function in the population. As population changes,
other equilibria might emerge.

Finally, we were interested in whether the Tallinn mechanism hurts fam-
ilies compared to a strategy-proof stable mechanism such as the Deferred-
Acceptance mechanism. We saw that the number of unassigned students
is much higher under the Tallinn mechanism. This can partially be in-
terpreted as an inefficiency of behaviour due to the mechanism. However,
there is no considerable mean welfare effect — agents optimise their utility
maximising strategies under the Tallinn mechanism.

We see that we manage to find beneficial strategies under the Tallinn
mechanism; however, due to the non-repetitive nature of the game, real-life
learning can be relatively limited for most of the families. Nevertheless,
as a stylised fact about the reporting of preferences indicated, agents learn
not to report the maximum number of preferences, rather they limit their
reported lists. In addition, in the case of exam schools, they tend to report
schools from the top of the list, yet there remains a high probability of local
regular schools also being reported. This could be the “learning effect” —
the Tallinn mechanism prioritises neighbourhood kids by using the cardinal
measure of distance.

In conclusion, it was demonstrated that post-Soviet school-proposing
mechanisms use some properties of the central marketplace that are open to
manipulation — such mechanisms force families to learn strategic behaviour
by reporting non-truthful preferences. In this respect, the Tallinn mecha-
nism is similar to the infamous Boston mechanism. Moreover, it was shown
that both would result in a higher expected utility for the agents compared
to the optimal, stable and strategy-proof Deferred-Acceptance mechanism,
which might be the property of generally manipulable mechanisms.
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4 Policy Design for Kindergarten Allocation

4.1 Introduction

Families have become a much-debated issue in all developed countries and
they form the focal point of debates about “new risks” and the much needed
“new policies” for Western welfare states. The questions of who should care
for children, to what extent and for how long, lie at the centre of conflicts
about the values that shape not only policies and struggles around poli-
cies, but also individual and family choices (Saraceno, 2011). Moreover, in
Eastern Europe, the Soviet legacy has paved the way for the dominance
of publicly provided care, but in many countries, including the case exam-
ined here, there is a shortage of early childhood care places for children
aged 18 months to three years. This shortage of places has forced munic-
ipalities, who are the main providers, to set priorities for the allocation
of these places. Priorities are aimed not only at solving the problem of
oversubscription, but also at implementing social goals. Thus, we concep-
tualise the process of implementing priorities accompanied with allocation
principles (matching design) as policy design.

Policy design entails taking the approach of a matching mechanism de-
sign in order to propose a good way to allocate children to kindergartens.
There are process descriptions about the (re-)design of school choice mech-
anisms, e.g. in various cities in the US (Pathak and Sénmez, 2013; Pathak
and Shi, 2013; Ergin and S6nmez, 2006) and in Amsterdam (de Haan et al.,
2015). Nevertheless, to the best of our knowledge, our paper is the first to
report such a redesign of a kindergarten allocation mechanism. However,
our theoretical founding relies on the mechanism design literature moti-
vated by related applications, such as school choice (Abdulkadiroglu and
Sonmez, 2003; Abdulkadiroglu et al., 2005a), college admissions (Bir6 et al.,
2010b; Chen et al., 2012) and job assignments (Roth, 2008). Mechanism
design provides methods for allocation under given welfare criteria and se-
lection priorities, but it does not prescribe the way in which these priorities
should be applied. The general policy considerations for school choice are
the allocation of siblings to the same school and the proximity of the school.
Some countries also use some affirmative action measures, e.g. prioritising
children of low socio-economic status. Similar principles are applicable to
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our kindergarten policy design case study while aiming for the clear-cut
implementation and operationalisation of policies. The latter not only con-
cerns a clear definition of proximity as a priority (i.e. defined as a walk-zone
(Shi, 2015) or a continuous cardinal measure (West et al., 2004)) or the or-
dering of priority classes but also allows for the implementation of welfare
considerations in policy evaluation.

Our welfare considerations aim at two social goals: efficiency and fair-
ness. We define efficiency as the ability of a policy to meet predefined goals,
the utility of families (high rank in their preferences and siblings in the same
kindergarten) accompanied with social goals such as minimising the travel
distance or time to kindergartens. Defining fairness is more problematic
and entails more uncertainty. Our definition of fairness is based on the idea
of equal access. It is operationalised by the probability that the child is
assigned to her first preference.

Instead of implementing certain social goals by policy design, the most
commonly used priority in Estonian municipalities is the date of applica-
tion, while in limited cases, catchment areas are applied to ensure proximity.
Children are ordered on the basis of the application date in a manner sim-
ilar to a serial dictatorship mechanism, thus forcing one-sided matchings
without enabling the implementation of affirmative action policies or social
goals, such as fairness. In addition, parental preferences are not consid-
ered or these are limited. In the Harku case, the number of preferences
was bounded by three until 2015. The latter restriction implies that pref-
erences are not revealed truthfully and moreover, the matching has been
done manually.

Between 2014 and 2016 as part of an Estonian project we collaborated
with the representatives of the Harku municipality. We monitored their
2015 allocation practice and suggested a revision which led to a transitory
system in 2016. In the 2016 allocation, the standard student-proposing
deferred-acceptance mechanism was used under a special priority setting
which is described in detail in Section 4.2.3. This mechanism is known to
be strategy-proof, and the parents were encourage to submit full preference
lists, so we can expect the submitted applications to be truthful. We made
a comparative assessment of policies using the 2016 data. As an input we
used preference data collected from 152 families who have the right to a
kindergarten place.

In the assessment, we proposed seven different policies which consist
of different metrics of indicating distance (as absolute, relative or binary
measures), siblings, quotas; and their priority order. Ties are broken by
assigning random numbers either with a single or with multiple lotteries.
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Our research methods are partially inspired by Shi (2015), but we investi-
gated some novel policies as well. Perhaps the most interesting aspect of
these policies is the way the distance is used in the priorities.

The classical way of creating proximity priorities is the catchment area
system, where the city is partitioned into areas and the students living in
an area have the highest priority in all schools in that area. This sim-
ple method can be seen as unfair, as one student can have a higher priority
than another student, even though the actual distance of her location to the
school is greater than for the other child. Therefore instead of catchment ar-
eas, most applications have switched to absolute or relative distance based
priorities. The simplest absolute distance based policy is the walk-zone pri-
ority scheme, used in many US cities (e.g. New York (Abdulkadiroglu et al.,
2005a)), where the children living within a well-defined walking distance are
in the high distance priority group for that school and the ties are broken
by lottery. Strict priorities based on absolute distances are used in Sweden
as well (Andersson, 2017). However, there were also discussions and court
cases about the fairness of such absolute distance based priorities’.

The absolute distance based priority schemes can be unfair for those
living far from all (or most) of the (good) schools, therefore the so-called
relative distance based methods are also commonly used in many applica-
tions (e.g. Calsamiglia and Giiell (2014); Shi (2015)). The relative distance
priority means that we give the highest priority to all children for their
closest kindergarten, no matter how far that is, and the children will be in
the second priority group in their second closest kindergarten, and so on. A
rough version of this rule is to give high priority for all children in a given
number of closest schools.

In the city of Lund parents have challenged allocation decisions in court based on
an alternative option distance argument. The city used the absolute distance priority in
their allocation, but some parents have found this policy unfair, as they would have to
travel 1000m more to their second choice school than to their first choice school, whilst
there was another student who would only need to travel 650m more if allocated to
their second choice school rather than their first choice school. The court accepted this
argument and gave a seat to the appealing student in their first choice school.
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Barcelona changed its catchment area systems to a relative distance
system in 2007. After the change, students have priority in at least six of
their closest schools (Calsamiglia and Giiell, 2014, Section 5.1)2. In Boston,
another relative distance policy was proposed recently by Shi (2015), mainly
in order to reach the goal of the city to cut down busing costs.

Note that there are also applications where the distance based priorities
are considered unfair, as they can limit equal access to good schools. The
Amsterdam school choice system (de Haan et al., 2015) does not use any
distance based priority, only a pure lottery. In the Harku case, where
kindergartens are of more or less the same quality, the authority was in
favour of using the distance based priorities in order to decrease the overall
commuting costs and also to satisfy the preferences of the parents that
were typically for nearby kindergartens. Based on the unfairness of the
catchment area system described above, we only considered absolute and
relative distance based priority approaches. We explain the distance based
priorities that we studied in more detail in Section 4.3 with examples.

Besides the distance we also investigated different ways of taking the
sibling priorities into account and also the way the lotteries are conducted
in case of ties. The way the distance and sibling factors are considered has
already been studied in the literature (Dur et al., 2013). The particular
solution chosen for the 2016 transitory system is an interesting rotation
priority scheme, which can lead to a well-balanced solution with respect to
the two factors. Regarding the lotteries, we analysed the effects of using a
single lottery for all kindergartens compared to using multiple lotteries (one
at each kindergarten), and we have seen results similar to other research
papers (Ashlagi and Nikzad, 2015).

As the second main contribution of our paper, we present a sensitiv-
ity analysis of various metrics of fairness and efficiency of policy designs
based on counter-factual preference profiles. The policies that provide the
best solutions for the current Harku data may not be ideal for other ap-
plications or robust for Harku, where the preferences of the parents are
different. This can be the case in cities, or in other countries with different
kindergarten/school qualities, or for applications at different education lev-
els (e.g. primary and secondary schools). Therefore, we found it important
to investigate the effects of the changes in priorities in the performance of

2«Before 2007, the city was divided into fixed neighbourhoods. The neighbourhoods
varied in size for semi-public and public schools, but were conceptually the same. For
semi-public schools, the neighbourhood coincided with the administrative district. For
public schools, the neighbourhoods were smaller areas within the administrative district.
The new neighbourhoods are based on distance between schools and family residences.
An area (specifically, a minimum convex polygon) around every block of houses in the
city was established to include at least the six closest schools (three public and three
semi-public).”
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different policies (i.e. different priority structures for the student-optimal
deferred acceptance mechanism). As a novel approach, we studied the fair-
ness (or equal access) of the allocations measured in the probabilities of
getting placed in the first choice schools. The results indicate that pref-
erence structures, more precisely their endogeneity on proximity, influence
the “optimal” policy design. However, in general we can advocate for a
relatively simple policy that prioritises siblings first and relative distance
second.

We structure the chapter as follows. In Section 4.2 we review the
practices and processes of kindergarten choice of an Estonian municipality,
Harku, before the process was redesigned on the basis of our recommen-
dations in 2016. In Section 4.3 we define seven alternative policies and
descriptive statistics of our data, including our results from computational
experiments. Finally, we conclude in Section 4.5.

4.2 Matching mechanism design

The design of an allocation mechanism is usually based on a two-sided
matching market model, in this case between 1) families and 2) kinder-
gartens. Participants on both sides have linear orderings over the partici-
pants on the other side. Families have preferences over kindergartens and
they seek to get allocated to their most preferred kindergartens. Kinder-
gartens have a priority ranking over children. Priorities become important
if there are fewer places available in a particular kindergarten than the
number of families who would like to be allocated to that kindergarten.
In those circumstances, kindergartens accept children who are higher on
their priority list, which in practice usually means children who live closer
and/or who have a sibling in the kindergarten. Kindergartens do not seek
to admit higher priority children, which is different from some applications
of two-sided markets. In college admissions for example (Gale and Shap-
ley, 1962), both students and colleges seek to get more preferred matches,
therefore they might act strategically in the allocation mechanism.

There are two prominent strategy-proof mechanisms for solving match-
ing problems, the Deferred-Acceptance (DA) and the Top-Trading Cycles
(TTC) mechanisms (Abdulkadiroglu and Sénmez, 2003). The DA mech-
anism guarantees that no preferences and priorities (policies in our case)
are violated, and there is no child who could get a place in a more pre-
ferred kindergarten by priority, so there are no blocking pairs. A matching
with no blocking pairs is called stable. A blocking pair can also be seen
as a child having justified envy, since there is a family that would pre-
fer a kindergarten that either has free places or has accepted a child with
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lower priority. These kinds of justified envy situations are not tolerated
in most applications (Pathak and Sénmez, 2013), and are sometimes even
prohibited by law. Thus, stability is a crucial property of any mechanism.

While there is potentially a number of stable allocations (Knuth, 1997b),
the child-proposing DA mechanism that is usually implemented results in
the best possible preference for all families among the stable solutions, and
this option also makes it safe for the families to reveal their true preferences.

The theoretical properties and disadvantages of DA were studied by
Haeringer and Klijn (2009), backed by evidence from laboratory experi-
ments (Calsamiglia et al., 2010) and by practical applications across the
world (Pathak and Sénmez, 2013). In addition to advocating for DA, the
main policy implications of these studies indicate that for efficiency gain,
it is advised to increase the bounds on the number of collected preferences
or to abolish the limit on the number of submitted preferences.

4.2.1 Matching practices in Harku

Before its redesign, the application process of the Harku municipality had
many design features, but it was not a transparent system. Families could
submit up to three ordered choices. The application date and the home
address were also collected. The application date was relevant for the al-
location, as families with an earlier application date had higher priority.
Therefore, families tended to submit their applications as early as possible,
usually a few weeks after child-birth. The application data typically re-
mained unchanged until the actual allocation occurred, which could make
the originally true preferences out of date (e.g. it was possible that the
family moved to a different place or their older sibling has received a place
in a different kindergarten during the waiting period). The address could
be a factor, as some heads of kindergartens considered it when assigning
places. Secondly, a qualifying condition for a kindergarten place is that the
parents have to be registered residents in Harku, and residency is based on
where the local taxes are collected.

Moreover, the matching was done manually using the following proce-
dural rules. First, the number of vacant places was settled by January of
each year, when the allocation process started. Place offers were made to
families by the heads of kindergartens if their kindergarten was the first
choice of the family. Second, if there were more families than places, then
priority was given to the applications with earlier registration dates, al-
though proximity or siblings could also be occasionally relevant. Third,
if an offer was accepted, the child became assigned to the kindergarten,
otherwise that place was offered to the subsequent family on the waiting
list.
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In the case of unassigned children, the procedural rules where com-
plicated and discretionary. Generally the heads of the kindergarten com-
municated with each other to find a place for the children who remained
unassigned. In the case of families who ordered popular kindergarten on
the top of their list and remained unassigned in the first round, second or
third choice was considered, although these could already be full. If that
was the case, the families with an earlier application date would be re-
jected from their second choice because the children already assigned there
had listed that kindergarten as their first preference, irrespective of their
application dates. Thus, some children were allocated to a less preferred
kindergarten, simply because of how the family ordered their preferences.
This is a well-known property of the Immediate-Acceptance mechanism
(e.g. Abdulkadiroglu and Sénmez, 2003) and the procedure that had been
used in Harku until 2015 was very similar to this.

4.2.2 Building a mechanism for kindergarten seat allocation

Our redesign of Harku kindergarten allocation mechanism inspired by lit-
erature has four main areas as described in Table 4.1. The application
procedure before 2016 which was initiated by collecting preferences had
several drawbacks. First, since parents could get higher priority if they
applied earlier, they tended to apply soon after the birth of the child. How-
ever, during the subsequent three years, the preferences of the families could
have changed. That was usually not reflected in the application data, thus
resulting in a high number of cancellations. Second, families could only
list their top three choices. Limited preference not only created a large
number of unassigned children, but also manipulation with the revelation
of preferences.

Our design changed the data collection procedure and the number of
preferences collected. Families use the application platform® during a lim-
ited period (one month) six months before the service delivery (1. Septem-
ber) and listed all their preferences. Giving up application date as a priority
will be an imminent result of the procedural amendments.

Finally, the central allocation mechanism applied until 2016 was not
transparent, the priorities were not clearly defined or adhered to by the
heads of the kindergartens. The first priority of the application date was
sometimes violated. Children with siblings were usually considered to have
higher priority, but not always. Our design introduced clearly defined prior-
ity metrics and a centralised allocation system that ensures that the criteria
are always followed. Moreover, instead of unstable and manipulable Imme-
diate Acceptance mechanism we proposed the child-proposing DA. This is

3https://www.haldo.ee/
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Table 4.1: Redesign of Harku mechanism

2015

2016

Application procedure

Applications are collected af-
ter the birth of the child due
to prioritising according to
application dates

Applications are collected
from 1 January until 1 Febru-
ary for allocating places from
1 September of the same year

Limited pre

ference lists

Limited to three kinder- | List all kindergartens they are
gartens willing to attend (no limit)
Priorities (policies)
Not clearly defined S.ee Section 4..3.2 for policy de-
sign alternatives
Matching mechanism
Decentralised mechanism

which has some properties
of Serial dictatorship and
Boston (Immediate accep-

Deferred-Acceptance

tance)

a standard method for school choice (Abdulkadiroglu and Sénmez, 2003),
which eliminates justified envy, and gives incentive for the families to state
their true preferences.

4.2.3 Particularities of the 2016 system

Before the final implementation of our platform-based matching design,
there was a transitory system in place in Harku in 2016 that partially ap-
plied our design recommendations, but experimented with priorities. Fam-
ilies were asked to rank all seven kindergartens. Additionally, the home
address, application date, status of siblings and the child’s birth date were
collected. The allocation process was designed on the basis of the DA mech-
anism with slots (Dur et al., 2013) while policy transformation regarding
fixing priorities was more complex. There were four types of priorities that
are defined per position as follows, in the order of precedence:

1. siblings, distance, age, application date
2. distance, age, application date, siblings

3. application date, siblings, distance, age
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4. age, application date, siblings, distance

5. siblings, distance, age, application date

6. distance, age, application date, siblings

The positions are considered in order, with families first applying to
the first position, then the second position, etc. This can also be thought
of as each kindergarten being split into a number of seats, with each seat
potentially having a unique priority criteria. Then, the preferences of the
families are modified so that within each kindergarten, they rank the posi-
tion with the higher precedence higher. If the number of available places is
not exactly divisible by four, then some type of priorities might have more
positions available than others.

The main reason for the complicated policy design or for considering
the four types of priorities rotationally was backed by the argument of
equal treatment. Granting equal opportunity to all ”types of families” (the
ones that have siblings; those living nearby; early applicants; and families
with an older child) was the preference of the local municipality. In future
allocations, the application date will not be used anymore. It was used as
here as some families still had the expectation of being allocated by the
application date.

The precedence order of priority classes matters in the allocation proce-
dure, as shown by Dur et al. (2013) by demonstrating that a simple priority
scheme might be discriminating for some groups. For instance, let us as-
sume there are five seats with siblings and distance priority and a further
five seats with only distance priority. There are more than five children
with a sibling and in total more than ten children. If for the first five po-
sitions we would consider children with siblings and then by distance, this
would be disadvantageous for children with siblings compared to first only
considering distance and then siblings as well as distance. In the latter case,
some children with siblings might already be allocated by distance alone,
so other children with siblings have lower competition and a better chance
of getting a desired place. On the other hand, it might occur that some
children living closer have an unfair disadvantage. The aim of the rotating
scheme is to balance these two effects. That leads us to the equal treatment
issues related to policy design.
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4.3 Policy design

4.3.1 Efficiency and fairness

In mechanism design the goals are usually related to designing an allocation
method that maximises a form of efficiency, while not violating some con-
straint(s). In the matching domain, the usual criterion is selecting a Pareto
optimal matching among a set of stable matchings. In a public resource
two-sided matching setting, e.g. school seats, usually in fact two selections
are made: first, the priorities of applicants and second, the mechanism. In
a school choice setting, the priorities are often based on siblings and dis-
tance, although there are other alternatives (Matching in Practice, 2016).
However, in designing the allocation mechanism these priorities are usually
treated as a given.

When evaluating the allocation methods we concentrate on two main
criteria: efficiency and fairness. Efficiency characterises the level at which
we, as a designer, can satisfy the preferences of the applicants. Thus, we
look at the average allocated preference. We also include the percentage of
applicants receiving their first preference as this is often the case and the
average might not always be a good indicator.

In addition to efficiency and stability (lack of envy), our policy design is
driven by equality concerns. In the literature on distributive justice, discus-
sion on fairness (fair access in our case) is often accompanied by discussion
on the principles of affirmative action, i.e. the Rawlsian difference principle
(Rawls, 1971). In our case, fair access is defined as the chance for the family
to access their most preferred kindergarten. Moreover, we include in our
design some positive discrimination, or controlled choice, through policies
such as prioritising siblings.

Fair access is essentially different from the efficiency metrics for the
priorities of local municipalities and the preferences of families. The goal
of fair access is to provide an opportunity for everyone to get into their
most preferred kindergarten. As some families might live far away from
all kindergartens, they would always be low on the priority list for any
kindergarten. We measure fair access as the proportion of families placed
in their most preferred kindergarten on two levels, at least 10% chance and
50% chance. This is similar to access to quality in (Shi, 2015) where quality,
in addition to being ranked high, contains an objective quality metric. Since
there is no quality ranking for a kindergarten in our case and only a small
number of kindergartens we look at the probability of families having a
chance to be allocated to their first choice. Since not all policy designs use
lotteries, some will be inherently unfair in terms of fair access.
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The mechanism also allows the local authorities to have social objec-
tives, which are usually, but not always aligned with the preferences of the
parents. The two most prominent goals are

e having siblings in the same kindergarten, and
e placing children in a kindergarten near their home.

Prioritisation of proximity and siblings is also recommended by the reg-
ulations responsible for the allocation of kindergarten places (Preschool
Child Care Institutions Act, 2014). While proximity and siblings are com-
mon practice in the case of school and kindergarten choice design, often
favoured as the means to sustain community cohesively and avoid unrea-
sonable transportation costs (see Shi, 2015, for instance), this practice may
cause various concerns. The proximity principle may lead to problems in
segregated areas, where it may result in the concentration of children from
a similar socio-economic background into the same kindergartens. Further
social objectives could be the prioritisation of disadvantaged families or
children with special needs, but there was no access to this kind of infor-
mation in the data, so those goals were disregarded in this study. However,
the main goal is still to provide families with a place in their most preferred
kindergartens.

4.3.2 Operationalisation of policy designs

A short list of social objectives indicated in the previous section does not
mean that policy designs are limited to two alternatives, as the priority
structures for siblings and proximity have many variants. Children with
siblings might always have priority over others, or might only be priori-
tised over families living further away. Proximity can also be considered
in multiple different ways, such as a walk-zone or a catchment area or a
geographical distance.

A simple way to consider geographic aspects is to define catchment areas
for each kindergarten, and prioritise the children living in the catchment
area where the kindergarten is located. The drawback of this method is that
these priorities may not reflect the personalised distances, as a kindergarten
might be relatively far from an address in the same area, whilst another
kindergarten in a different area can actually be nearby. Therefore, it may
be more appropriate to use personalised distances. We can use continuous
(real) distances or discretise them somehow, for instance giving priority to
a kindergarten within a 10-minute walking distance, or giving priority to
the closest, or several closest kindergartens. Another option is to give high
priority to a child in a number of nearby kindergartens. A special version
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of the latter so-called menu system has been evaluated and used in Boston
school choice (Shi, 2015). Below we specify the distance-based priorities
that we used in our policies.

e absolute: Strict priorities based on the personalised absolute distances
between the child’s location and the school, measured in walk time
or kilometres.

e walk-zone: Coarse priorities based on the above-described absolute
distance. A child is in the high priority group for a school if she lives
within a 10-minute walking distance to this school.

e relative: Every child is in the highest distance-based priority group
in her closest school, she is in the second highest priority group in the
second closest school, and so on.

e 3 closest: A binary variant of the above-defined relative distance pol-
icy, where every child is in the high priority group of a school, if this
school is among the three closest schools for this child.

When we consider the children in walk-zones to have a higher priority,
followed by children with siblings, the following priority groups are ob-
tained: 1. siblings in walk-zones, 2. children in walk-zones, 3. siblings, 4.
the rest. Siblings could also be considered to have a higher priority, which
would result in the priority groups: 1. siblings in walk-zones, 2. siblings,
3. children in walk-zones, 4. the rest. This simple classification is used
in many US cities, such as New York (Abdulkadiroglu et al., 2005a) and
Boston (Abdulkadiroglu et al., 2005b), together with a randomised lottery
for breaking ties. The lottery can also be conducted in two ways, either as a
single lottery which is used in all kindergartens, or as multiple lotteries, one
for each kindergarten. The typical choice, used in most US school choice
programmes and also in Irish higher education admissions (Chen, 2012),
is the single lottery. We will investigate both in our computational exper-
iments. This question is discussed further by Ashlagi and Nikzad (2015)
and Pathak and Sethuraman (2011).

If it is considered undesirable that a high proportion of children get
admitted by sibling priority, then one option is to set a quota for siblings,
for example 50% of the places. In this case, there is high priority for siblings
for only some proportion of the places available, and the remaining places
are prioritised by distance only. In such a setting, how the allocation is
implemented is crucial. It can be done by allocating the places for siblings
first and then the remaining seats or in reverse. Dur et al. (2013) showed
that the reverse approach can benefit children with siblings, and Hafalir
et al. (2013) showed that reserving places for a certain minority results in a
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better allocation for the minority than limiting the quota for the majority
does. Under the latter policy, both groups (minority and majority) could
be worse off. We evaluate policy design by the reservation of places for
siblings or for families living nearby. In Harku, only about 20% of children
have a sibling, so 20% of the places were set to have a sibling priority.

The Deferred-Acceptance algorithm can be slightly modified to accom-
modate for reserves and quotas. The priority quotas can be considered as
separate kindergartens. In this variant, the child is first placed in a quota
group high in the precedence order, and if rejected, the child is then placed
lower, etc. Thus, each child will be placed in the highest possible precedence
quota group.

Table 4.2: Summary of policies (priority order in parentheses)

Policy | Distance (D) | Siblings (S) | Lottery (Prg(;(:;:rslce)

DAl absolute (2) (1) no no

DA2 walk-zone (2) (1) (3) no

DA3 walk-zone (1) (2) (3) no

DA4 3 closest (2) (1) (3) no
80%, 20%]

DA5 absolute (2) (1) no (ID, $+D])
20%, 80%]

DAG6 absolute (2) (1) no (1S+D, D))

DA7T relative (2) (1) (3) no

In this study, in order to explore the described aspects, we settled on
seven priority policies (summarised in Table 4.2) for evaluation:

DA1. Children with siblings always have the highest priority and children
living closer have higher priority. Priority classes would be considered
in the order: 1) siblings; 2) walking distance.

DA2. Children with siblings always have the highest priority, then children
in the walk-zone have higher priority. The walk-zone is defined as a
10-minute walking distance from home. Additional ties are ordered by
a random lottery for all kindergartens. The order of priority classes is:
1) siblings + walk-zone; 2) siblings; 3) walk-zone; 4) the remainder.

DA3. Children in the walk-zone always have the highest priority, then chil-
dren with siblings have higher priority. Additional ties are ordered by
a random lottery for all kindergartens. The order of priority classes is:
1) siblings + walk-zone; 2) walk-zone; 3) siblings; 4) the remainder.
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DAA4.

DAS.

DAG.

DAT.

Children with siblings always have the highest priority, and children
have higher priority for the three closest kindergartens. Additional
ties are ordered by a random lottery for all kindergartens. Priority
precedence order: 1) siblings + one-of-three-closest; 2) siblings; 3)
one-of-three-closest; 4) the remainder.

Children with siblings have the highest priority for the reserved 20%
of places, otherwise priority is by distance. Precedence order: 1) by
distance up to 80%; 2) children with siblings + distance up to 20%;
3) remaining places, if any, by distance.

Children with siblings have the highest priority for the reserved 20%
of places, otherwise priority is by distance. Precedence order: 1)
children with siblings + distance up to 20%; 2) remaining places, if
any, by distance.

Children with siblings always have the highest priority, and children
have higher priority in the closest kindergarten, second highest in the
second-closest, etc. Additional ties are ordered by a random lottery
for all kindergartens. Priority precedence order: 1) siblings; 2) closest-
number.

To demonstrate the effect of policies we construct a simple example. Let
us assume we have four children C' = {¢y, ¢, ¢3, ¢4} and four kindergartens
K = {ki,ka, k3, ks}. In Table 4.3 we show the distances between homes
and kindergartens. We have no children with siblings in this example.

Table 4.3: Distances between homes and kindergartens (km-s)

km k?l k2 k‘g k4

c1 712 1.0 1.7
c2 4 6 3 .7
c3 9 5 4 3
c4 g 3 9 1.0

Assuming that walk-zone distance is < .6 km, the resulting priorities
are in Table 4.4. We can observe that with absolute distance or walk-zone
the child ¢; would not have a high priority in any kindergarten. However
with the 3-closest policy, there is at least some chance of having the highest
priority in some kindergarten and with relative distance, each child has
the highest priority in at least one kindergarten. While this 